Select Page

Science on Health Effects of Cell Phone and Wireless Radiation

Share

A growing body of scientific evidence links cell phone radiofrequency (RF) radiation to a broad range of harmful effects at at legally allowed levels including cancer, memory damage and  impacts on brain development, the endocrine system, thyroid function, reproduction, and DNA/genetic damage ( Panagopoulos et al. 2021, Lai 2021, Smith-Roe et al. 2020, Davis et al 2023, ICBE-EMF 2022, Lai and Levitt 2022, Hardell and Carlberg 2017, Miller et al. 2018, Belpomme et al 2018, Directorate-General for Parliamentary Research Services European Parliament 202, Hardell and Carlberg 2017).

Environmental impacts have also been identified. A landmark three part 2021 research review on effects to wildlife published in Reviews on Environmental Health by U.S experts journalist Blake Levitt, Dr. Henry Lai and former U.S. Fish and Wildlife senior biologist Albert Manville state current science should trigger urgent regulatory action citing more than 1,200 scientific references which found adverse biological effects to wildlife from even very low intensities of non ionizing radiation with findings of  impacts to orientation and migration, reproduction, mating, nest, den building and survivorship. This 150-page report has more than 1,200 references (Levitt et al., 2021a, Levitt et al., 2021bLevitt et al., 2021c).

On this page we have a small sampling of the over 1,000 studies. To read more about 5G and cell towers please go to our 5G research page or cell tower research page.

Bandara, P., & Carpenter, D. O. (2018). Planetary electromagnetic pollution: It is time to assess its impact. The Lancet Planetary Health, 2(12), e512–e514. 

 

Belpomme, D., Hardell, L., Belyaev, I., Burgio, E., & Carpenter, D. O. (2018). Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environmental Pollution, 242, 643–658. 

 

Carpenter DO. (2013) Human disease resulting from exposure to electromagnetic fields. Rev Environ Health.;28(4):159-72. 

 

Directorate-General for Parliamentary Research Services (European Parliament), & Belpoggi, F. (2021). Health impact of 5G: Current state of knowledge of 5G related carcinogenic and reproductive/developmental hazards as they emerge from epidemiological studies and in vivo experimental studies. Publications Office of the European Union. 

 

International Commission on the Biological Effects of Electromagnetic Fields (ICBE-EMF), (2022). Scientific evidence invalidates health assumptions underlying the FCC and ICNIRP exposure limit determinations for radiofrequency radiation: implications for 5G. Environ Health. Oct 18;21(1):92.  

 

McCredden, J. E., Cook, N., Weller, S., & Leach, V. (2022). Wireless technology is an environmental stressor requiring new understanding and approaches in health care. Frontiers in Public Health, 10. 

 

Miller, A. B., Sears, M. E., Morgan, L. L., Davis, D. L., Hardell, L., Oremus, M., & Soskolne, C. L. (2019). Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Frontiers in Public Health, 7.  

 

Miller, A. B., Morgan, L. L., Udasin, I., & Davis, D. L. (2018). Cancer epidemiology update, following the 2011 IARC evaluation of radiofrequency electromagnetic fields (Monograph 102). Environmental Research, 167, 673–683. 

 

Panagopoulos, D. J., Johansson, O., & Carlo, G. L. (2015). Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity. Scientific Reports, 5, 14914.

 

Children’s Vulnerability 

Frank, J. W. (2021). Electromagnetic fields, 5G and health: What about the precautionary principle? J Epidemiol Community Health, 75(6), 562–566. 

 

Hardell, L. (2018). Effects of Mobile Phones on Children’s and Adolescents’ Health: A Commentary. Child Development, 89(1), 137–140. 

 

Kelley, E., Blank, M., Lai, H., Moskowitz, J., & Havas, M. (2015). International Appeal: Scientists call for protection from non-ionizing electromagnetic field exposure. European Journal of Oncology, Volume 20, 180–182.

 

Lissak, G. (2018). Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environmental Research, 164, 149–157. 

 

Miller, A. B., Sears, M. E., Morgan, L. L., Davis, D. L., Hardell, L., Oremus, M., & Soskolne, C. L. (2019). Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Frontiers in Public Health, 7. 

 

Moon, J.-H. (2020). Health effects of electromagnetic fields on children. Clinical and Experimental Pediatrics, 63(11), 422–428. 

 

Redmayne, M., & Johansson, O. (2015). Radiofrequency exposure in young and old: Different sensitivities in light of age-relevant natural differences. Reviews on Environmental Health, 30(4), 323–335. 

 

Sage, C., & Burgio, E. (2018). Electromagnetic Fields, Pulsed Radiofrequency Radiation, and Epigenetics: How Wireless Technologies May Affect Childhood Development. Child Development, 89(1), 129–136. 

 

Childrens Higher Exposures 

Cabot, E., Christ, A., Bühlmann, B., Zefferer, M., Chavannes, N., Bakker, J. F., van Rhoon, G. C., & Kuster, N. (2014). Quantification Of RF-exposure of the Fetus Using Anatomical CAD-Models in Three Different Gestational Stages. Health Physics, 107(5), 369–381.

 

  1. Christ, M.-C. Gosselin, M. Christopoulou, S. Kühn, N. Kuster, 2010 “Age-dependent

tissue-specific exposure of cell phone users”, Physics Medicine Biology 55, pp.

1767–1783

 

Fernández, C., de Salles, A. A., Sears, M. E., Morris, R. D., & Davis, D. L. (2018). Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality. Environmental Research, 167, 694–699.

 

Fernández-Rodríguez, C. E., De Salles, A. A. A., & Davis, D. L. (2015). Dosimetric Simulations of Brain Absorption of Mobile Phone Radiation–The Relationship Between psSAR and Age. IEEE Access, 3, 2425–2430. 

 

Ferreira, J., & Almeida de Salles, A. (2015). Specific Absorption Rate (SAR) in the head of Tablet users. The 7Th IEEE Latin-American Conference On Communications (Latincom 2015), 1538, 5-9. Retrieved 3 June 2020.

 

Gandhi, O. P. (2015). Yes the Children Are More Exposed to Radiofrequency Energy From Mobile Telephones Than Adults. IEEE Access, 3, 985–988. 

 

Gandhi, O. P., Morgan, L. L., de Salles, A. A., Han, Y.-Y., Herberman, R. B., & Davis, D. L. (2012). Exposure Limits: The underestimation of absorbed cell phone radiation, especially in children. Electromagnetic Biology and Medicine, 31(1), 34–51. 

 

Mohammed, B., Jin, J., Abbosh, A. M., Bialkowski, K. S., Manoufali, M., & Crozier, S. (2017). Evaluation of Children’s Exposure to Electromagnetic Fields of Mobile Phones Using Age-Specific Head Models With Age-Dependent Dielectric Properties. IEEE Access, 5, 27345–27353.

 

Siervo, B., Morelli, M. S., Landini, L., & Hartwig, V. (2018). Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop. Bioelectromagnetics, 39(5), 414–422.

 

Wang J, Fujiwara O, Kodera S, Watanabe S. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz. Phys Med Biol. 2006 Sep 7;51(17):4119-27. doi: 10.1088/0031-9155/51/17/001. Epub 2006 Aug 8. PMID: 16912372.

Barnes, F., & Freeman, J. E. R. (2022). Some thoughts on the possible health effects of electric and magnetic fields and exposure guidelines. Frontiers in Public Health, 10. 

 

Belyaev, I. (2010). Dependence of non-thermal biological effects of microwaves on physical and biological variables: Implications for reproducibility and safety standards. European Journal of Oncology Library, 5, 187–218. 

 

International Commission on the Biological Effects of Electromagnetic Fields (ICBE-EMF), (2022). Scientific evidence invalidates health assumptions underlying the FCC and ICNIRP exposure limit determinations for radiofrequency radiation: implications for 5G. Environ Health. Oct 18;21(1):92.  

 

Gandhi, O. P. (2019). Microwave Emissions From Cell Phones Exceed Safety Limits in Europe and the US When Touching the Body. IEEE Access, 7, 47050–47052. 

 

Georgiou, C. D., Kalaitzopoulou, E., Skipitari, M., Papadea, P., Varemmenou, A., Gavriil, V., Sarantopoulou, E., Kollia, Z., & Cefalas, A.-C. (2022). Physical Differences between Man-Made and Cosmic Microwave Electromagnetic Radiation and Their Exposure Limits, and Radiofrequencies as Generators of Biotoxic Free Radicals. Radiation, 2(4), 285–302. 

 

Hardell, L. (2017). World Health Organization, radiofrequency radiation and health—A hard nut to crack (Review). International Journal of Oncology, 51(2), 405–413. 

 

Hardell, L., & Carlberg, M. (2020). [Comment] Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest. Oncology Letters, 20(4), 1–1. 

 

Hardell, L., Nilsson, M., Koppel, T., & Carlberg, M. (2021). Aspects on the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020 Guidelines on Radiofrequency Radiation. Journal of Cancer Science and Clinical Therapeutics, 5(2), 250–285. 

 

Lai, H., & Levitt, B. B. (2022). The roles of intensity, exposure duration, and modulation on the biological effects of radiofrequency radiation and exposure guidelines. Electromagnetic Biology and Medicine, 41(2), 230–255. 

 

Lopez I, Rivera M, Feliz N,  Maestu C. (2022) It is mandatory to review environmental radiofrequency electromagnetic field measurement protocols and exposure regulations: An opinion article. Front. Public Health, 24 October  

 

Pall, M. L. (2015). Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: Microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Reviews on Environmental Health, 30(2), 99–116. 

 

Redmayne, M. (2016). International policy and advisory response regarding children’s exposure to radio frequency electromagnetic fields (RF-EMF). Electromagnetic Biology and Medicine, 35(2), 176–185. 

 

Uche, U. I., & Naidenko, O. V. (2021). Development of health-based exposure limits for radiofrequency radiation from wireless devices using a benchmark dose approach. Environmental Health, 20(1), 84. 

 

Fertility and Reproduction 

Adams, J. A., Galloway, T. S., Mondal, D., Esteves, S. C., & Mathews, F. (2014). Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environment International, 70, 106–112.

 

Chen, H.-G., Wu, P., Sun, B., Chen, J.-X., Xiong, C.-L., Meng, T.-Q., Huang, X.-Y., Su, Q.-L., Zhou, H., Wang, Y.-X., Ye, W., & Pan, A. (2022). Association between electronic device usage and sperm quality parameters in healthy men screened as potential sperm donors. Environmental Pollution (Barking, Essex: 1987), 312, 120089. 

 

Chu KY, Khodamoradi K, Dullea A, Ramasamy R. Swipe Right on Male Infertility: Effect of cell phone radiation on sperm motility. Fertility and Sterility. 118(5 Suppl):e38-e39. 2022.  

 

Desai, N.R., Kesari, K.K. & Agarwal, A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol 7, 114 (2009).

 

Esmailzadeh, S., Delavar, M. A., Aleyassin, A., Gholamian, S. A., & Ahmadi, A. (2019). Exposure to Electromagnetic Fields of High Voltage Overhead Power Lines and Female Infertility. The International Journal of Occupational and Environmental Medicine, 10(1), 11–16. 

 

Hassanzadeh-Taheri, M., Khalili, M. A., Hosseininejad Mohebati, A., Zardast, M., Hosseini, M., Palmerini, M. G., & Doostabadi, M. R. (2022). The detrimental effect of cell phone radiation on sperm biological characteristics in normozoospermic. Andrologia, 54(1), e14257.

 

Houston, B. J., Nixon, B., King, B. V., De Iuliis, G. N., & Aitken, R. J. (2016). The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction (Cambridge, England), 152(6), R263–R276. 

 

Jangid, P., Rai, U., Sharma, R. S., & Singh, R. (2022). The role of non-ionizing electromagnetic radiation on female fertility: A review. International Journal of Environmental Health Research, 0(0), 1–16.

 

Kesari, K. K., & Behari, J. (2010). Effects of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicological & Environmental Chemistry, 92(6), 1135–1147. 

 

Maluin, S. M., Osman, K., Jaffar, F. H. F., & Ibrahim, S. F. (2021). Effect of Radiation Emitted by Wireless Devices on Male Reproductive Hormones: A Systematic Review. Frontiers in Physiology, 12.

 

Okechukwu, C. E. (2020). Does the Use of Mobile Phone Affect Male Fertility? A Mini-Review. Journal of Human Reproductive Sciences, 13(3), 174–183. 

 

Yu, G., Bai, Z., Song, C., Cheng, Q., Wang, G., Tang, Z., & Yang, S. (2021). Current progress on the effect of mobile phone radiation on sperm quality: An updated systematic review and meta-analysis of human and animal studies. Environmental Pollution, 282, 116952. 

 

Zhang, G., Yan, H., Chen, Q., Liu, K., Ling, X., Sun, L., Zhou, N., Wang, Z., Zou, P., Wang, X., Tan, L., Cui, Z., Zhou, Z., Liu, J., Ao, L., & Cao, J. (2016). Effects of cell phone use on semen parameters: Results from the MARHCS cohort study in Chongqing, China. Environment International, 91, 116–121.

 

Cancer and Wireless Radio Frequency

Bortkiewicz, A., Gadzicka, E., & Szymczak, W. (2017). Mobile phone use and risk for intracranial tumors and salivary gland tumors—A meta-analysis. International Journal of Occupational Medicine and Environmental Health, 30(1), 27–43. 

 

Cardis, E., Armstrong, B. K., Bowman, J. D., Giles, G. G., Hours, M., Krewski, D., McBride, M., Parent, M. E., Sadetzki, S., Woodward, A., Brown, J., Chetrit, A., Figuerola, J., Hoffmann, C., Jarus-Hakak, A., Montestruq, L., Nadon, L., Richardson, L., Villegas, R., & Vrijheid, M. (2011). Risk of brain tumours in relation to estimated RF dose from mobile phones: Results from five Interphone countries. Occupational and Environmental Medicine, 68(9), 631. 

 

Carlberg, M., & Hardell, L. (2017). Evaluation of Mobile Phone and Cordless Phone Use and Glioma Risk Using the Bradford Hill Viewpoints from 1965 on Association or Causation. BioMed Research International, 2017, 9218486. 

 

Carlberg, M., Hedendahl, L., Ahonen, M., Koppel, T., & Hardell, L. (2016). Increasing incidence of thyroid cancer in the Nordic countries with main focus on Swedish data. BMC Cancer, 16(1), 426. 

 

Carlberg, M., & Hardell, L. (2014). Decreased Survival of Glioma Patients with Astrocytoma Grade IV (Glioblastoma Multiforme) Associated with Long-Term Use of Mobile and Cordless Phones. International Journal of Environmental Research and Public Health, 11(10), 10790–10805. 

 

Choi, Y.-J., Moskowitz, J. M., Myung, S.-K., Lee, Y.-R., & Hong, Y.-C. (2020). Cellular Phone Use and Risk of Tumors: Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 17(21), 8079. 

 

Coureau, G., Bouvier, G., Lebailly, P., Fabbro-Peray, P., Gruber, A., Leffondre, K., Guillamo, J.-S., Loiseau, H., Mathoulin-Pélissier, S., Salamon, R., & Baldi, I. (2014). Mobile phone use and brain tumours in the CERENAT case-control study. Occupational and Environmental Medicine, 71(7), 514–522. 

 

Davis DL., Pilarcik, AM., Miller, AB. (2020) Increased Generational Risk of Colon and Rectal Cancer in Recent Birth Cohorts under Age 40 – the Hypothetical Role of Radiofrequency Radiation from Cell Phones. Ann Gastroenterol Dig Dis, 3(1): 09-16. ​​https://www.somatopublications.com/increased-generational-risk-of-colon-and-rectal-cancer-in-recent-birth-cohorts-under-age-40-the-hypothetical-role-of-radiofrequency-radiation-from-cell-phones.pdf 

 

Directorate-General for Parliamentary Research Services (European Parliament), & Belpoggi, F. (2021). Health impact of 5G: Current state of knowledge of 5G related carcinogenic and reproductive/developmental hazards as they emerge from epidemiological studies and in vivo experimental studies. Publications Office of the European Union. 

 

Falcioni, L., Bua, L., Tibaldi, E., Lauriola, M., De Angelis, L., Gnudi, F., Mandrioli, D., Manservigi, M., Manservisi, F., Manzoli, I., Menghetti, I., Montella, R., Panzacchi, S., Sgargi, D., Strollo, V., Vornoli, A., & Belpoggi, F. (2018). Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environmental Research, 165, 496–503. 

 

Giuliani, L., & Soffritti, M. (2010). Non-thermal effects and mechanisms of interaction between electromagnetic fields and living matter. Library Vol. 5, 187–218. 

 

Hardell, L., & Carlberg, M. (2013). Using the Hill viewpoints from 1965 for evaluating strengths of evidence of the risk for brain tumors associated with use of mobile and cordless phones. Reviews on Environmental Health, 28(2–3), 97–106. 

 

Hardell, L., & Carlberg, M. (2015). Mobile phone and cordless phone use and the risk for glioma—Analysis of pooled case-control studies in Sweden, 1997-2003 and 2007-2009. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 22(1), 1–13. 

 

Hardell, L., & Carlberg, M. (2019). Comments on the US National Toxicology Program technical reports on toxicology and carcinogenesis study in rats exposed to whole-body radiofrequency radiation at 900 MHz and in mice exposed to whole-body radiofrequency radiation at 1,900 MHz. International Journal of Oncology, 54(1), 111–127. 

 

Hardell, L. (2017). World Health Organization, radiofrequency radiation and health—A hard nut to crack (Review). International Journal of Oncology, 51(2), 405–413. 

 

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2013). Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 102(Pt 2), 1–460.

 

Lerchl, A., Klose, M., Grote, K., Wilhelm, A. F. X., Spathmann, O., Fiedler, T., Streckert, J., Hansen, V., & Clemens, M. (2015). Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans. Biochemical and Biophysical Research Communications, 459(4), 585–590. 

 

James C. Lin. (2022) Carcinogenesis from chronic exposure to radio-frequency radiation.  Front. Public Health, Sec. Radiation and Health. 31 October 

 

Luo, J., Li, H., Deziel, N. C., Huang, H., Zhao, N., Ma, S., Ni, X., Udelsman, R., & Zhang, Y. (2020). Genetic susceptibility may modify the association between cell phone use and thyroid cancer: A population-based case-control study in Connecticut. Environmental Research, 182, 109013. 

 

Markovà, E., Malmgren, L. O. G., & Belyaev, I. Y. (2010). Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk. Environmental Health Perspectives, 118(3), 394–399. 

 

Melnick, R. L. (2019). Commentary on the utility of the National Toxicology Program study on cell phone radiofrequency radiation data for assessing human health risks despite unfounded criticisms aimed at minimizing the findings of adverse health effects. Environmental Research, 168, 1–6.

 

Miller, A. B., Morgan, L. L., Udasin, I., & Davis, D. L. (2018). Cancer epidemiology update, following the 2011 IARC evaluation of radiofrequency electromagnetic fields (Monograph 102). Environmental Research, 167, 673–683. 

 

Pareja-Peña, F., Burgos-Molina, A. M., Sendra-Portero, F., & Ruiz-Gómez, M. J. (2022). Evidences of the (400 MHz – 3 GHz) radiofrequency electromagnetic field influence on brain tumor induction. International Journal of Environmental Health Research, 32(1), 121–130. 

 

Prasad, M., Kathuria, P., Nair, P., Kumar, A., & Prasad, K. (2017). Mobile phone use and risk of brain tumours: A systematic review of association between study quality, source of funding, and research outcomes. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 38(5), 797–810. 

 

Peleg, M., Nativ, O., & Richter, E. D. (2018). Radio frequency radiation-related cancer: Assessing causation in the occupational/military setting. Environmental Research, 163, 123–133. 

 

Peleg M, Berry EM, Deitch M, Nativ O, Richter E.(2022)  On radar and radio exposure and cancer in the military setting. Environ Res. 2022 Oct 21:114610 

 

Shih, Y.-W., Hung, C.-S., Huang, C.-C., Chou, K.-R., Niu, S.-F., Chan, S., & Tsai, H.-T. (2020). The Association Between Smartphone Use and Breast Cancer Risk Among Taiwanese Women: A Case-Control Study. Cancer Management and Research, 12, 10799–10807. 

 

Soffritti, M., & Giuliani, L. (2019). The carcinogenic potential of non-ionizing radiations: The cases of S-50 Hz MF and 1.8 GHz GSM radiofrequency radiation. Basic & Clinical Pharmacology & Toxicology, 125 Suppl 3, 58–69. 

 

Vienne-Jumeau, A., Tafani, C., & Ricard, D. (2019). Environmental risk factors of primary brain tumors: A review. Revue Neurologique, 175(10), 664–678. 

 

West, J. G., Kapoor, N. S., Liao, S.-Y., Chen, J. W., Bailey, L., & Nagourney, R. A. (2013). Multifocal Breast Cancer in Young Women with Prolonged Contact between Their Breasts and Their Cellular Phones. Case Reports in Medicine, 2013, e354682. 

 

Yang, M., Guo, W., Yang, C., Tang, J., Huang, Q., Feng, S., Jiang, A., Xu, X., & Jiang, G. (2017). Mobile phone use and glioma risk: A systematic review and meta-analysis. PLOS ONE, 12(5), e0175136.

 

DNA Damage and Genotoxicity

Diem, E., Schwarz, C., Adlkofer, F., Jahn, O., & Rüdiger, H. (2005). Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutation Research, 583(2), 178–183. 

 

Lai, H. (2021). Genetic effects of non-ionizing electromagnetic fields. Electromagnetic Biology and Medicine, 40(2), 264–273. 

 

Lai, H., & Singh, N. P. (1995). Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics, 16(3), 207–210. 

 

Lai, H., & Singh, N. P. (1996). Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. International Journal of Radiation Biology, 69(4), 513–521.

 

López-Díaz, B., Mercado-Sáenz, S., Burgos-Molina, A. M., González-Vidal, A., Sendra-Portero, F., & Ruiz-Gómez, M. J. (2022). Genomic DNA damage induced by co-exposure to DNA damaging agents and pulsed magnetic field. International Journal of Radiation Biology, 1–13. 

 

Megha, K., Deshmukh, P. S., Banerjee, B. D., Tripathi, A. K., Ahmed, R., & Abegaonkar, M. P. (2015). Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology, 51, 158–165. 

 

Panagopoulos, D. J., Karabarbounis, A., Yakymenko, I., & Chrousos, G. P. (2021). Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). International Journal of Oncology, 59(5), 1–16. 

 

Phillips, J. L., Singh, N. P., & Lai, H. (2009). Electromagnetic fields and DNA damage. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 16(2–3), 79–88.

 

Ruediger, H. W. (2009). Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 16(2–3), 89–102. 

 

Smith-Roe, S. L., Wyde, M. E., Stout, M. D., Winters, J. W., Hobbs, C. A., Shepard, K. G., Green, A. S., Kissling, G. E., Shockley, K. R., Tice, R. R., Bucher, J. R., & Witt, K. L. (2020). Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. Environmental and Molecular Mutagenesis, 61(2), 276–290. 

 

Cancer and Powerline Magnetic Extremely Low Frequency Fields 

Brabant, C., Geerinck, A., Beaudart, C., Tirelli, E., Geuzaine, C., & Bruyère, O. (2022). Exposure to magnetic fields and childhood leukemia: A systematic review and meta-analysis of case-control and cohort studies. Reviews on Environmental Health. 

 

Carles, C., Esquirol, Y., Turuban, M., Piel, C., Migault, L., Pouchieu, C., Bouvier, G., Fabbro-Peray, P., Lebailly, P., & Baldi, I. (2020). Residential proximity to power lines and risk of brain tumor in the general population. Environmental Research, 185, 109473. 

 

Carpenter, D. O. (2013). Human disease resulting from exposure to electromagnetic fields. Reviews on Environmental Health, 28(4), 159–172. 

 

Carpenter, D. O. (2019). Extremely low frequency electromagnetic fields and cancer: How source of funding affects results. Environmental Research, 178, 108688.

 

Erdem, O., Akay, C., Cevher, S. C., Canseven, A. G., Aydın, A., & Seyhan, N. (2018). Effects of Intermittent and Continuous Magnetic Fields on Trace Element Levels in Guinea Pigs. Biological Trace Element Research, 181(2), 265–271. 

 

IARC. (n.d.). Non-ionizing Radiation, Part 1: Static and Extremely Low-frequency (ELF) Electric and Magnetic Fields. Retrieved September 21, 2022, from https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Non-ionizing-Radiation-Part-1-Static-And-Extremely-Low-frequency-ELF-Electric-And-Magnetic-Fields-2002

 

Karimi, A., Ghadiri Moghaddam, F., & Valipour, M. (2020). Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Molecular Biology Reports, 47(7), 5621–5633.

 

Khan, M. W., Juutilainen, J., Naarala, J., & Roivainen, P. (2022). Residential extremely low frequency magnetic fields and skin cancer. Occupational and Environmental Medicine, 79(1), 49–54.

 

Koeman, T., van den Brandt, P. A., Slottje, P., Schouten, L. J., Goldbohm, R. A., Kromhout, H., & Vermeulen, R. (2014). Occupational extremely low-frequency magnetic field exposure and selected cancer outcomes in a prospective Dutch cohort. Cancer Causes & Control: CCC, 25(2), 203–214.

 

Seomun, G., Lee, J., & Park, J. (2021). Exposure to extremely low-frequency magnetic fields and childhood cancer: A systematic review and meta-analysis. PLOS ONE, 16(5), e0251628. 

 

Tumor Promotion and Synergistic Effects

Ansarihadipour, H., & Bayatiani, M. (2016). Influence of Electromagnetic Fields on Lead Toxicity: A Study of Conformational Changes in Human Blood Proteins. Iranian Red Crescent Medical Journal, 18(7), e28050. 

 

Baohong, W., Jiliang, H., Lifen, J., Deqiang, L., Wei, Z., Jianlin, L., & Hongping, D. (2005). Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro. Mutation Research, 578(1–2), 149–157.

 

Byun, Y.-H., Ha, M., Kwon, H.-J., Hong, Y.-C., Leem, J.-H., Sakong, J., Kim, S. Y., Lee, C. G., Kang, D., Choi, H.-D., & Kim, N. (2013). Mobile Phone Use, Blood Lead Levels, and Attention Deficit Hyperactivity Symptoms in Children: A Longitudinal Study. PLOS ONE, 8(3), e59742. 

 

Cao, Y., Zhang, W., Lu, M.-X., Xu, Q., Meng, Q.-Q., Nie, J.-H., & Tong, J. (2009). 900-MHz microwave radiation enhances gamma-ray adverse effects on SHG44 cells. Journal of Toxicology and Environmental Health. Part A, 72(11–12), 727–732. 

 

Choi, K.-H., Ha, M., Ha, E.-H., Park, H., Kim, Y., Hong, Y.-C., Lee, A.-K., Hwa Kwon, J., Choi, H.-D., Kim, N., Kim, S., & Park, C. (2017). Neurodevelopment for the first three years following prenatal mobile phone use, radio frequency radiation and lead exposure. Environmental Research, 156, 810–817. 

 

Kostoff, R.N. and Clifford G.Y. Lau. 2017.  “Modified health effects of non-ionizing electromagnetic radiation combined with other agents reported in the biomedical literature.”  Microwave Effects on DNA and Proteins (2017): 97-158.

 

Lerchl, A., Klose, M., Grote, K., Wilhelm, A. F. X., Spathmann, O., Fiedler, T., Streckert, J., Hansen, V., & Clemens, M. (2015). Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans. Biochemical and Biophysical Research Communications, 459(4), 585–590.

 

Moretti, M., Villarini, M., Simonucci, S., Fatigoni, C., Scassellati-Sforzolini, G., Monarca, S., Pasquini, R., Angelucci, M., & Strappini, M. (2005). Effects of co-exposure to extremely low frequency (ELF) magnetic fields and benzene or benzene metabolites determined in vitro by the alkaline comet assay. Toxicology Letters, 157(2), 119–128. 

 

Soffritti, M., & Giuliani, L. (2019). The carcinogenic potential of non-ionizing radiations: The cases of S-50 Hz MF and 1.8 GHz GSM radiofrequency radiation. Basic & Clinical Pharmacology & Toxicology, 125 Suppl 3, 58–69. 

 

Soffritti, M., Tibaldi, E., Padovani, M., Hoel, D. G., Giuliani, L., Bua, L., Lauriola, M., Falcioni, L., Manservigi, M., Manservisi, F., & Belpoggi, F. (2016). Synergism between sinusoidal-50 Hz magnetic field and formaldehyde in triggering carcinogenic effects in male Sprague–Dawley rats. American Journal of Industrial Medicine, 59(7), 509–521.  

 

Sueiro-Benavides, R. A., Leiro-Vidal, J. M., Salas-Sánchez, A. Á., Rodríguez-González, J. A., Ares-Pena, F. J., & López-Martín, M. E. (2021). Radiofrequency at 2.45 GHz increases toxicity, pro-inflammatory and pre-apoptotic activity caused by black carbon in the RAW 264.7 macrophage cell line. Science of The Total Environment, 765, 142681. 

 

Benavides RAS, Leiro-Vidal JM, Rodriguez JA, Ares-Pena FJ, López-Martín E. The HL-60 human promyelocytic cell line constitutes an effective in vitro model for evaluating toxicity, oxidative stress and necrosis/apoptosis after exposure to black carbon particles and 2.45 GHz radio frequency. Sci Total Environ. 2023 Jan 9:161475.  

 

Szudziński, A., Pietraszek, A., Janiak, M., Wrembel, J., Kałczak, M., & Szmigielski, S. (1982). Acceleration of the development of benzopyrene-induced skin cancer in mice by microwave radiation. Archives of Dermatological Research, 274(3–4), 303–312. 

 

Turner, M. C., Benke, G., Bowman, J. D., Figuerola, J., Fleming, S., Hours, M., Kincl, L., Krewski, D., McLean, D., Parent, M.-E., Richardson, L., Sadetzki, S., Schlaefer, K., Schlehofer, B., Schüz, J., Siemiatycki, J., van Tongeren, M., & Cardis, E. (2014). Occupational Exposure to Extremely Low-Frequency Magnetic Fields and Brain Tumor Risks in the INTEROCC Study. Cancer Epidemiology, Biomarkers & Prevention, 23(9), 1863–1872. 

 

Vila, J., Turner, M. C., Gracia-Lavedan, E., Figuerola, J., Bowman, J. D., Kincl, L., Richardson, L., Benke, G., Hours, M., Krewski, D., McLean, D., Parent, M.-E., Sadetzki, S., Schlaefer, K., Schlehofer, B., Schüz, J., Siemiatycki, J., van Tongeren, M., Cardis, E., & INTEROCC Study Group. (2018). Occupational exposure to high-frequency electromagnetic fields and brain tumor risk in the INTEROCC study: An individualized assessment approach. Environment International, 119, 353–365. 

 

Zhang, F., Xu, C.-L., & Liu, C.-M. (2015). Drug delivery strategies to enhance the permeability of the blood–brain barrier for treatment of glioma. Drug Design, Development and Therapy, 9, 2089–2100. 

 

Headaches 

https://pubmed.ncbi.nlm.nih.gov/11102297/

 

Butt, M., Chavarria, Y., Ninmol, J., Arif, A., Tebha, S. S., Daniyal, M., Siddiqui, U. M., Shams, S. S., Sarfaraz, Q., Haider, S. F., & Essar, M. Y. (2022). Association of increased pain intensity, daytime sleepiness, poor sleep quality, and quality of life with mobile phone overuse in patients with migraine: A multicenter, cross-sectional comparative study. Brain and Behavior, e2760. 

 

Chongchitpaisan, W., Wiwatanadate, P., Tanprawate, S., Narkpongphan, A., & Siripon, N. (2021). Trigger of a migraine headache among Thai adolescents smartphone users: A time series study. Environmental Analysis Health and Toxicology, 36(1). 

 

Demir YP,  Sumer MM. (2019). Effects of smartphone overuse on headache, sleep and quality of life in migraine patients. Neurosciences (Riyadh).  Apr;24(2):115-121

 

Durusoy, R., Hassoy, H., Özkurt, A., & Karababa, A. O. (2017). Mobile phone use, school electromagnetic field levels and related symptoms: A cross-sectional survey among 2150 high school students in Izmir. Environmental Health: A Global Access Science Source, 16(1), 51. 

 

Farashi, S., Bashirian, S., Khazaei, S., Khazaei, M., & Farhadinasab, A. (2022). Mobile phone electromagnetic radiation and the risk of headache: A systematic review and meta-analysis. International Archives of Occupational and Environmental Health, 95(7), 1587–1601. 

 

Sudan, M., Kheifets, L., Arah, O., Olsen, J., & Zeltzer, L. (2012). Prenatal and Postnatal Cell Phone Exposures and Headaches in Children. The Open Pediatric Medicine Journal, 6(2012), 46–52. 

 

Prenatal Exposures

Costantino, C., Mazzucco, W., Bonaccorso, N., Sciortino, M., Cimino, L., Pizzo, S., Conforto, A., Calò, I., Giliberti, D., Gambino, C. R., Segreto, D., Maiorana, A., Vitale, F., & Casuccio, A. (2022). A cross-sectional study on smartphone uses among pregnant women attending childbirth classes in the Metropolitan Area of Palermo, Italy: The Stop-Phone study. Annali Di Igiene: Medicina Preventiva E Di Comunita. 

 

Alchalabi, A. S. H., Aklilu, E., Aziz, A. R., Malek, F., Ronald, S. H., & Khan, M. A. (2016). Different periods of intrauterine exposure to electromagnetic field: Influence on female rats’ fertility, prenatal and postnatal development. Asian Pacific Journal of Reproduction, 5(1), 14–23. 

 

Aldad, T. S., Gan, G., Gao, X.-B., & Taylor, H. S. (2012). Fetal Radiofrequency Radiation Exposure From 800-1900 Mhz-Rated Cellular Telephones Affects Neurodevelopment and Behavior in Mice. Scientific Reports, 2(1), 312. 

 

Bektas, H., Bektas, M. S., & Dasdag, S. (2018). Effects of mobile phone exposure on biochemical parameters of cord blood: A preliminary study. Electromagnetic Biology and Medicine, 37(4), 184–191. 

 

Bektas, H., Bektas, M. S., & Dasdag, S. (2022). Effect of mobile phone usage duration during pregnancy on the general motor movements of infants. Biotechnology & Biotechnological Equipment, 36(1), 56–66. 

 

Boileau, N., Margueritte, F., Gauthier, T., Boukeffa, N., Preux, P.-M., Labrunie, A., & Aubard, Y. (2020). Mobile phone use during pregnancy: Which association with fetal growth? Journal of Gynecology Obstetrics and Human Reproduction, 49(8), 101852. 

 

Bozok S, Karaagac E, Sener D, Akakin D, Tumkaya L. (2022) The effects of long-term prenatal exposure to 900, 1800, and 2100 MHz electromagnetic field radiation on myocardial tissue of rats. Toxicol Ind Health. 

 

Cabot, E., Christ, A., Bühlmann, B., Zefferer, M., Chavannes, N., Bakker, J. F., van Rhoon, G. C., & Kuster, N. (2014). Quantification Of RF-exposure of the Fetus Using Anatomical CAD-Models in Three Different Gestational Stages. Health Physics, 107(5), 369–381. 

 

Holovská, K., Almášiová, V., Andrašková, S., Demčišáková, Z., Račeková, E., & Cigánková, V. (2021). Effect of electromagnetic radiation on the liver structure and ultrastructure of in utero irradiated rats. Acta Veterinaria Brno, 90(3), 315–319. 

 

Jarrah, I. E., & Rababa, M. (2022). Impacts of smartphone radiation on pregnancy: A systematic review. Heliyon, 8(2). 

 

Li, D.-K., Chen, H., Ferber, J. R., Hirst, A. K., & Odouli, R. (2020). Association Between Maternal Exposure to Magnetic Field Nonionizing Radiation During Pregnancy and Risk of Attention-Deficit/Hyperactivity Disorder in Offspring in a Longitudinal Birth Cohort. JAMA Network Open, 3(3), e201417. 

 

Li, D.-K., Chen, H., & Odouli, R. (2011). Maternal Exposure to Magnetic Fields During Pregnancy in Relation to the Risk of Asthma in Offspring. Archives of Pediatrics & Adolescent Medicine, 165(10), 945–950. 

 

Lu, X., Oda, M., Ohba, T., Mitsubuchi, H., Masuda, S., & Katoh, T. (2017). Association of excessive mobile phone use during pregnancy with birth weight: An adjunct study in Kumamoto of Japan Environment and Children’s Study. Environmental Health and Preventive Medicine, 22(1), 52. 

 

Stasinopoulou, M., Fragopoulou, A. F., Stamatakis, A., Mantziaras, G., Skouroliakou, K., Papassideri, I. S., Stylianopoulou, F., Lai, H., Kostomitsopoulos, N., & Margaritis, L. H. (2016). Effects of pre- and postnatal exposure to 1880-1900MHz DECT base radiation on development in the rat. Reproductive Toxicology (Elmsford, N.Y.), 65, 248–262. 

 

Tomruk, A., Ozgur-Buyukatalay, E., Ozturk, G. G., & Ulusu, N. N. (2022). Short-term exposure to radiofrequency radiation and metabolic enzymes’ activities during pregnancy and prenatal development. Electromagnetic Biology and Medicine, 0(0), 1–9. 

 

Zarei, S., Mortazavi, S. M. J., Mehdizadeh, A. R., Jalalipour, M., Borzou, S., Taeb, S., Haghani, M., Mortazavi, S. A. R., Shojaei-fard, M. B., Nematollahi, S., Alighanbari, N., & Jarideh, S. (2015). A Challenging Issue in the Etiology of Speech Problems: The Effect of Maternal Exposure to Electromagnetic Fields on Speech Problems in the Offspring. Journal of Biomedical Physics & Engineering, 5(3), 151–154.

 

Zhang, Y., Li, Z., Gao, Y., & Zhang, C. (2015). Effects of fetal microwave radiation exposure on offspring behavior in mice. Journal of Radiation Research, 56(2), 261–268. 

 

Zhao, D., Guo, L., Zhang, R., Zhu, Q., Wang, H., Liu, R., Yan, H., & Dang, S. (2021). Risk of congenital heart disease due to exposure to common electrical appliances during early pregnancy: A case-control study. Environmental Science and Pollution Research, 28(4), 4739–4748. 

Electromagnetic Sensitivity 

Balmori, A. (2022). Evidence for a health risk by RF on humans living around mobile phone base stations: From radiofrequency sickness to cancer. Environmental Research, 214, 113851. https://doi.org/10.1016/j.envres.2022.113851

 

Belpomme, D., Campagnac, C., & Irigaray, P. (2015). Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder. Reviews on Environmental Health, 30(4), 251–271. https://doi.org/10.1515/reveh-2015-0027

 

Belpomme, D., Carlo, G. L., Irigaray, P., Carpenter, D. O., Hardell, L., Kundi, M., Belyaev, I., Havas, M., Adlkofer, F., Heuser, G., Miller, A. B., Caccamo, D., De Luca, C., von Klitzing, L., Pall, M. L., Bandara, P., Stein, Y., Sage, C., Soffritti, M., … Vorst, A. V. (2021a). The Critical Importance of Molecular Biomarkers and Imaging in the Study of Electrohypersensitivity. A Scientific Consensus International Report. International Journal of Molecular Sciences, 22(14), Article 14. https://doi.org/10.3390/ijms22147321

 

Belpomme, D., & Irigaray, P. (2020). Electrohypersensitivity as a Newly Identified and Characterized Neurologic Pathological Disorder: How to Diagnose, Treat, and Prevent It. International Journal of Molecular Sciences, 21(6), E1915. https://doi.org/10.3390/ijms21061915

 

Belyaev, I., Dean, A., Eger, H., Hubmann, G., Jandrisovits, R., Kern, M., Kundi, M., Moshammer, H., Lercher, P., Müller, K., Oberfeld, G., Ohnsorge, P., Pelzmann, P., Scheingraber, C., & Thill, R. (2016). EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Reviews on Environmental Health, 31(3), 363–397. https://doi.org/10.1515/reveh-2016-0011

 

Bevington, M. (2019). The Prevalence of People With Restricted Access to Work in Man-Made Electromagnetic Environments. Journal of Environment and Health Science, 5, 1–12. https://doi.org/10.15436/2378-6841.19.2402

 

De Luca, C., Chung Sheun Thai, J., Raskovic, D., Cesareo, E., Caccamo, D., Trukhanov, A., & Korkina, L. (2014). Metabolic and Genetic Screening of Electromagnetic Hypersensitive Subjects as a Feasible Tool for Diagnostics and Intervention. Mediators of Inflammation, 2014, 924184. https://doi.org/10.1155/2014/924184

 

Dieudonné, M. (2019). Becoming electro-hypersensitive: A replication study. Bioelectromagnetics, 40(3), 188–200. https://doi.org/10.1002/bem.22180

 

Hardell, L., & Koppel, T. (2022). Electromagnetic hypersensitivity close to mobile phone base stations – a case study in Stockholm, Sweden. Reviews on Environmental Health. https://doi.org/10.1515/reveh-2021-0169

 

Hedendahl, L., Carlberg, M., & Hardell, L. (2015). Electromagnetic hypersensitivity—An increasing challenge to the medical profession. Reviews on Environmental Health, 30(4), 209–215. https://doi.org/10.1515/reveh-2015-0012

 

Heuser, G., & Heuser, S. A. (2017). Functional brain MRI in patients complaining of electrohypersensitivity after long term exposure to electromagnetic fields. Reviews on Environmental Health, 32(3), 291–299. https://doi.org/10.1515/reveh-2017-0014

 

Leszczynski, D. (2022). The lack of international and national health policies to protect persons with self-declared electromagnetic hypersensitivity. Reviews on Environmental Health. https://doi.org/10.1515/reveh-2022-0108

 

Dieudonné M. Electromagnetic hypersensitivity: a critical review of explanatory hypotheses. Environ Health. 2020 May 6;19(1):48. 

 

Dieudonné M. Does electromagnetic hypersensitivity originate from nocebo responses? Indications from a qualitative study. Bioelectromagnetics. 2016 Jan;37(1):14-24. 

 

Redmayne, M., & Reddel, S. (2021). Redefining electrosensitivity: A new literature-supported model. Electromagnetic Biology and Medicine, 40(2), 227–235. https://doi.org/10.1080/15368378.2021.1874971

 

Sage, C. (2015). The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS). Reviews on Environmental Health, 30(4), 293–303. https://doi.org/10.1515/reveh-2015-0007

 

Stein, Y., & Udasin, I. G. (2020). Electromagnetic hypersensitivity (EHS, microwave syndrome) – Review of mechanisms. Environmental Research, 186, 109445. https://doi.org/10.1016/j.envres.2020.109445

 

Verma, R., Swanson, R. L., Parker, D., Ould Ismail, A. A., Shinohara, R. T., Alappatt, J. A., Doshi, J., Davatzikos, C., Gallaway, M., Duda, D., Chen, H. I., Kim, J. J., Gur, R. C., Wolf, R. L., Grady, M. S., Hampton, S., Diaz-Arrastia, R., & Smith, D. H. (2019). Neuroimaging Findings in US Government Personnel With Possible Exposure to Directional Phenomena in Havana, Cuba. JAMA, 322(4), 336–347. https://doi.org/10.1001/jama.2019.9269

 

Diabetes

Bektas H, Algul S, Altindag F, Yegin K, Akdag Z, Dasdag S. (2022) Effects of 3.5 GHz (5G) Radiofrequency Radiation on Ghrelin, Nesfatin-1, and Irisin Levels in Diabetic and Healthy Brains. J Chem Neuroanat. 2022 Oct 8:102168.  

 

Ismaiil, L. A., Joumaa, W. H., & Moustafa, M. E. (2019). The impact of exposure of diabetic rats to 900 MHz electromagnetic radiation emitted from mobile phone antenna on hepatic oxidative stress. Electromagnetic Biology and Medicine, 38(4), 287–296. 

 

Masoumi, A., Karbalaei, N., Mortazavi, S. M. J., & Shabani, M. (2018). Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets. International Journal of Radiation Biology, 94(9), 850–857. 

 

Meo, S. A., Alsubaie, Y., Almubarak, Z., Almutawa, H., AlQasem, Y., & Hasanato, R. M. (2015). Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR) Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c) and Risk of Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 12(11), 14519–14528.

 

Milham, S. (2014). Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes. Electromagnetic Biology and Medicine, 33(1), 75–78. 

 

Sert, C., Delin, M., Eren, M. A., & Çakmak, Y. (2022). Investigation of Fetuin-A pathway in diabetes mellitus formation in rats exposed to elf magnetic fields. Electromagnetic Biology and Medicine, 1–7. 

 

Sibghatullah, H., Sangi, S. M. A., Ahmedani, E. I., Alqahtani, A., Bawadekji, A., & Nagaraja, S. (2021). Amelioration of Cell Phone and Wi Fi induced Pancreatic Damage and Hyperglycemia (Diabetes Mellitus) with Pomegranate and Vit E in Rats. Journal of Pharmaceutical Research International, 204–215. 

 

Obesity and Food Ingestion 

Bosquillon de Jenlis, A., Del Vecchio, F., Delanaud, S., Bach, V., & Pelletier, A. (2020). Effects of co-exposure to 900 MHz radiofrequency electromagnetic fields and high-level noise on sleep, weight, and food intake parameters in juvenile rats. Environmental Pollution, 256, 113461. 

 

Li, D.-K., Ferber, J. R., Odouli, R., & Quesenberry, C. P. (2012). A Prospective Study of In-utero Exposure to Magnetic Fields and the Risk of Childhood Obesity. Scientific Reports, 2(1), 540. 

 

Tripathi, R., Banerjee, S. K., Nirala, J. P., & Mathur, R. (2022). Simultaneous exposure to electromagnetic field from mobile phone and unimpeded fructose drinking during pre-, peri-, and post-pubertal stages perturbs the hypothalamic and hepatic regulation of energy homeostasis by early adulthood: Experimental evidence. Environmental Science and Pollution Research, 29(5), 7438–7451. 

 

Wardzinski, E. K., Jauch-Chara, K., Haars, S., Melchert, U. H., Scholand-Engler, H. G., & Oltmanns, K. M. (2022). Mobile Phone Radiation Deflects Brain Energy Homeostasis and Prompts Human Food Ingestion. Nutrients, 14(2), 339. 

 

Oxidative Stress

Georgiou, C. D., & Margaritis, L. H. (2021). Oxidative Stress and NADPH Oxidase: Connecting Electromagnetic Fields, Cation Channels and Biological Effects. International Journal of Molecular Sciences, 22(18), 10041.

 

Kamali, K., Taravati, A., Sayyadi, S., Gharib, F. Z., & Maftoon, H. (2018). Evidence of oxidative stress after continuous exposure to Wi-Fi radiation in rat model. Environmental Science and Pollution Research International, 25(35), 35396–35403. 

 

Manta, A. K., Stravopodis, D. J., Papassideri, I. S., & Margaritis, L. H. (2014). Reactive oxygen species elevation and recovery in Drosophila bodies and ovaries following short-term and long-term exposure to DECT base EMF. Electromagnetic Biology and Medicine, 33(2), 118–131. 

 

Pagadala et al. (2022). Effect of RFEMR on NSE and MDA levels in Sprague Dawley ratsBioinformation 18(6), 501-505.

 

Schuermann, D., & Mevissen, M. (2021). Manmade Electromagnetic Fields and Oxidative Stress—Biological Effects and Consequences for Health. International Journal of Molecular Sciences, 22(7), 3772. 

 

Singh, K. V., Gautam, R., Meena, R., Nirala, J. P., Jha, S. K., & Rajamani, P. (2020). Effect of mobile phone radiation on oxidative stress, inflammatory response, and contextual fear memory in Wistar rat. Environmental Science and Pollution Research International, 27(16), 19340–19351. 

 

Yakymenko, I., Tsybulin, O., Sidorik, E., Henshel, D., Kyrylenko, O., & Kyrylenko, S. (2016). Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagnetic Biology and Medicine, 35(2), 186–202. 

 

Miscarriage 

Ghazanfarpour, M., Kashani, Z. A., Pakzad, R., Abdi, F., Rahnemaei, F. A., Akbari, P. A., & Roozbeh, N. (2021). Effect of electromagnetic field on abortion: A systematic review and meta-analysis. Open Medicine (Warsaw, Poland), 16(1), 1628–1641.

 

Li, D.-K., Chen, H., Ferber, J. R., Odouli, R., & Quesenberry, C. (2017). Exposure to Magnetic Field Non-Ionizing Radiation and the Risk of Miscarriage: A Prospective Cohort Study. Scientific Reports, 7(1), 17541. 

 

Li, D.-K., Odouli, R., Wi, S., Janevic, T., Golditch, I., Bracken, T. D., Senior, R., Rankin, R., & Iriye, R. (2002). A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage. Epidemiology (Cambridge, Mass.), 13(1), 9–20. 

 

Mahmoudabadi, F. S., Ziaei, S., Firoozabadi, M., & Kazemnejad, A. (2015). Use of mobile phone during pregnancy and the risk of spontaneous abortion. Journal of Environmental Health Science and Engineering, 13(1), 34. 

 

Wang, Q., Cao, Z., Qu, Y., Peng, X., Guo, S., & Chen, L. (2013). Residential exposure to 50 Hz magnetic fields and the association with miscarriage risk: A 2-year prospective cohort study. PloS One, 8(12), e82113. 

 

Brain 

Alkis, M. E., Bilgin, H. M., Akpolat, V., Dasdag, S., Yegin, K., Yavas, M. C., & Akdag, M. Z. (2019). Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagnetic Biology and Medicine, 38(1), 32–47.

 

Bertagna, F., Lewis, R., Silva, S. R. P., McFadden, J., & Jeevaratnam, K. (2021). Effects of electromagnetic fields on neuronal ion channels: A systematic review. Annals of the New York Academy of Sciences, 1499(1), 82–103. 

 

Cabré-Riera, A., Marroun, H. E., Muetzel, R., van Wel, L., Liorni, I., Thielens, A., Birks, L. E., Pierotti, L., Huss, A., Joseph, W., Wiart, J., Capstick, M., Hillegers, M., Vermeulen, R., Cardis, E., Vrijheid, M., White, T., Röösli, M., Tiemeier, H., & Guxens, M. (2020). Estimated whole-brain and lobe-specific radiofrequency electromagnetic fields doses and brain volumes in preadolescents. Environment International, 142, 105808. 

 

Cabré-Riera, A., van Wel, L., Liorni, I., Koopman-Verhoeff, M. E., Imaz, L., Ibarluzea, J., Huss, A., Wiart, J., Vermeulen, R., Joseph, W., Capstick, M., Vrijheid, M., Cardis, E., Röösli, M., Eeftens, M., Thielens, A., Tiemeier, H., & Guxens, M. (2022). Estimated all-day and evening whole-brain radiofrequency electromagnetic fields doses, and sleep in preadolescents. Environmental Research, 204(Pt C), 112291. 

 

Echchgadda, I., Cantu, J. C., Tolstykh, G. P., Butterworth, J. W., Payne, J. A., & Ibey, B. L. (2022). Changes in the excitability of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields. Scientific Reports, 12(1), 3506.

 

Fragopoulou, A. F., Samara, A., Antonelou, M. H., Xanthopoulou, A., Papadopoulou, A., Vougas, K., Koutsogiannopoulou, E., Anastasiadou, E., Stravopodis, D. J., Tsangaris, G. T., & Margaritis, L. H. (2012). Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagnetic Biology and Medicine, 31(4), 250–274.

 

Hu, C., Zuo, H., & Li, Y. (2021). Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Frontiers in Public Health, 9. 

 

Li, Y., Deng, P., Chen, C., Ma, Q., Pi, H., He, M., Lu, Y., Gao, P., Zhou, C., He, Z., Zhang, Y., Yu, Z., & Zhang, L. (2021). 1,800 MHz Radiofrequency Electromagnetic Irradiation Impairs Neurite Outgrowth With a Decrease in Rap1-GTP in Primary Mouse Hippocampal Neurons and Neuro2a Cells. Frontiers in Public Health, 9, 771508. 

 

Mumtaz, S., Rana, J. N., Choi, E. H., & Han, I. (2022). Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. International Journal of Molecular Sciences, 23(16), 9288. 

 

Nittby, H., Brun, A., Eberhardt, J., Malmgren, L., Persson, B. R. R., & Salford, L. G. (2009). Increased blood–brain barrier permeability in mammalian brain 7 days after exposure

 

Pall, M. L. (n.d.). Low Intensity Electromagnetic Fields Act via Voltage-Gated Calcium Channel (VGCC) Activation to Cause Very Early Onset Alzheimer’s Disease: 18 Distinct Types of Evidence. Current Alzheimer Research, 19(2), 119–132.

 

Pall, M. L. (2016). Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. Journal of Chemical Neuroanatomy, 75, 43–51. 

 

Sharma, A., Shrivastava, S., & Shukla, S. (2020). Exposure of Radiofrequency Electromagnetic Radiation on Biochemical and Pathological Alterations. Neurology India, 68(5), 1092–1100. 

 

Sırav, B., & Seyhan, N. (2016). Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats. Journal of Chemical Neuroanatomy, 75(Pt B), 123–127. 

 

Sonmez, O. F., Odaci, E., Bas, O., & Kaplan, S. (2010). Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900MHz electromagnetic field. Brain Research, 1356, 95–101. 

 

Tan B, Canturk Tan F, Yalcin B, Dasdag S, Yegin K, Yay AH. (2022)  Changes in the histopathology and in the proteins related to the MAPK pathway in the brains of rats exposed to pre and postnatal radiofrequency radiation over four generations [published online ahead of print, 2022 Oct 29]. J Chem Neuroanat.126:102187 

 

Tang, J., Zhang, Y., Yang, L., Chen, Q., Tan, L., Zuo, S., Feng, H., Chen, Z., & Zhu, G. (2015). Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Research, 1601, 92–101.

 

Volkow, N. D., Tomasi, D., Wang, G.-J., Vaska, P., Fowler, J. S., Telang, F., Alexoff, D., Logan, J., & Wong, C. (2011). Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism. JAMA, 305(8), 808–813. 

 

Memory and Cognition 

Cabré-Riera, A., van Wel, L., Liorni, I., Thielens, A., Birks, L. E., Pierotti, L., Joseph, W., González-Safont, L., Ibarluzea, J., Ferrero, A., Huss, A., Wiart, J., Santa-Marina, L., Torrent, M., Vrijkotte, T., Capstick, M., Vermeulen, R., Vrijheid, M., Cardis, E., … Guxens, M. (2021). Association between estimated whole-brain radiofrequency electromagnetic fields dose and cognitive function in preadolescents and adolescents. International Journal of Hygiene and Environmental Health, 231, 113659. 

 

Foerster, M., Thielens, A., Joseph, W., Eeftens, M., & R, öösli M. (n.d.). A Prospective Cohort Study of Adolescents’ Memory Performance and Individual Brain Dose of Microwave Radiation from Wireless Communication. Environmental Health Perspectives, 126(7), 077007. 

 

Fragopoulou, A. F., Miltiadous, P., Stamatakis, A., Stylianopoulou, F., Koussoulakos, S. L., & Margaritis, L. H. (2010). Whole body exposure with GSM 900MHz affects spatial memory in mice. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 17(3), 179–187.

 

Maaroufi, K., Had-Aissouni, L., Melon, C., Sakly, M., Abdelmelek, H., Poucet, B., & Save, E. (2014). Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload. Behavioural Brain Research, 258, 80–89. 

 

Ntzouni, M. P., Skouroliakou, A., Kostomitsopoulos, N., & Margaritis, L. H. (2013). Transient and cumulative memory impairments induced by GSM 1.8 GHz cell phone signal in a mouse model. Electromagnetic Biology and Medicine, 32(1), 95–120. 

 

Ntzouni, M. P., Stamatakis, A., Stylianopoulou, F., & Margaritis, L. H. (2011). Short-term memory in mice is affected by mobile phone radiation. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 18(3), 193–199. 

 

Tan, S., Wang, H., Xu, X., Zhao, L., Zhang, J., Dong, J., Yao, B., Wang, H., Hao, Y., Zhou, H., Gao, Y., & Peng, R. (2021). Acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory abilities and CREB-related pathways. Scientific Reports, 11(1), 12348. 

 

Behavioral and Emotional  

Bagheri Hosseinabadi, M., Khanjani, N., Ebrahimi, M. H., Haji, B., & Abdolahfard, M. (2019). The effect of chronic exposure to extremely low-frequency electromagnetic fields on sleep quality, stress, depression and anxiety. Electromagnetic Biology and Medicine, 38(1), 96–101. 

 

Byun, Y.-H., Ha, M., Kwon, H.-J., Hong, Y.-C., Leem, J.-H., Sakong, J., Kim, S. Y., Lee, C. G., Kang, D., Choi, H.-D., & Kim, N. (2013). Mobile Phone Use, Blood Lead Levels, and Attention Deficit Hyperactivity Symptoms in Children: A Longitudinal Study. PLOS ONE, 8(3), e59742.  

 

Divan, H. A., Kheifets, L., Obel, C., & Olsen, J. (2012). Cell phone use and behavioural problems in young children. J Epidemiol Community Health, 66(6), 524–529. 

 

Hosseini, E., Habibi, M. F., Babri, S., Mohaddes, G., Abkhezr, H., & Heydari, H. (2022). Maternal stress induced anxiety-like behavior exacerbated by electromagnetic fields radiation in female rats offspring. PLOS ONE, 17(8), e0273206. 

 

Luo X, Huang X, Luo Z, Wang Z, He G, Tan Y, Zhang B, Zhou H, Li P, Shen T, Yu X, Yang X (2021): Electromagnetic field exposure-induced depression features could be alleviated by heat acclimation based on remodeling the gut microbiota. Ecotoxicol Environ Saf. 2021 Nov 15;228:112980.

 

Sudan, M., Birks, L. E., Aurrekoetxea, J. J., Ferrero, A., Gallastegi, M., Guxens, M., Ha, M., Lim, H., Olsen, J., González-Safont, L., Vrijheid, M., & Kheifets, L. (2018). Maternal cell phone use during pregnancy and child cognition at age 5 years in 3 birth cohorts. Environment International, 120, 155–162.  

 

Sudan, M., Olsen, J., Arah, O. A., Obel, C., & Kheifets, L. (2016). Prospective cohort analysis of cellphone use and emotional and behavioural difficulties in children. J Epidemiol Community Health, 70(12), 1207–1213.  

 

Endocrine System

Alkayyali, T., Ochuba, O., Srivastava, K., Sandhu, J. K., Joseph, C., Ruo, S. W., Jain, A., Waqar, A., & Poudel, S. (2021). An Exploration of the Effects of Radiofrequency Radiation Emitted by Mobile Phones and Extremely Low Frequency Radiation on Thyroid Hormones and Thyroid Gland Histopathology. Cureus, 13(8). 

 

Cantürk Tan, F., Yalçin, B., Yay, A. H., Tan, B., Yeğin, K., & Daşdağ, S. (2022). Effects of pre and postnatal 2450 MHz continuous wave (CW) radiofrequency radiation on thymus: Four generation exposure. Electromagnetic Biology and Medicine, 41(3), 315–324.  

 

Kitaoka, K., Kitamura, M., Aoi, S., Shimizu, N., & Yoshizaki, K. (2013). Chronic exposure to an extremely low-frequency magnetic field induces depression-like behavior and corticosterone secretion without enhancement of the hypothalamic–pituitary–adrenal axis in mice. Bioelectromagnetics, 34(1), 43–51.  

 

Mahila. (2021). Effect of Wi-Fi Radiation on Heart Rate Variability, Salivary Cortisol Level and Cognition. Journal of Pharmaceutical Research International, 229–232.

 

Perov, S., Rubtsova, N., & Balzano, Q. (2019). Effects of 171 MHz Low-Intensity Electromagnetic Field on Glucocorticoid and Mineral Corticoid Activity of the Adrenal Glands of Rats. Bioelectromagnetics, 40(8), 578–587.  

 

Sangün, Ö., Dündar, B., Çömlekçi, S., & Büyükgebiz, A. (2015). The Effects of Electromagnetic Field on the Endocrine System in Children and Adolescents. Pediatric Endocrinology Reviews: PER, 13(2), 531–545.

 

Siqueira, E. C., de Souza, F. T. A., Ferreira, E., Souza, R. P., Macedo, S. C., Friedman, E., Gomez, M. V., Gomes, C. C., & Gomez, R. S. (2016). Cell phone use is associated with an inflammatory cytokine profile of parotid gland saliva. Journal of Oral Pathology & Medicine, 45(9), 682–686.  

 

Uluaydin, N. K., Cerezci, O., & Seker, S. S. (2020). Can Mobile Phone Usage Affect Hypothalamus-Pituitary-Adrenal Axis Response? 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), 0780–0783.  

 

Immune System

Mahaki, H., Tanzadehpanah, H., Jabarivasal, N., Sardanian, K., & Zamani, A. (2019). A review on the effects of extremely low frequency electromagnetic field (ELF-EMF) on cytokines of innate and adaptive immunity. Electromagnetic Biology and Medicine, 38(1), 84–95.  

 

Zhao, L., Yao, C., Wang, H., Dong, J., Zhang, J., Xu, X., Wang, H., Yao, B., Ren, K., Sun, L., & Peng, R. (2022). Immune Responses to Multi-Frequencies of 1.5 GHz and 4.3 GHz Microwave Exposure in Rats: Transcriptomic and Proteomic Analysis. International Journal of Molecular Sciences, 23(13), 6949.  

 

Bacteria and Antibiotic Resistance 

I H., S.-S., F A., J., H H., Y., & M E., M. (2019). Evaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis. Journal of Biomedical Physics & Engineering, 9(5), 579–586.  

 

Mortazavi, S. M. J., Taheri, M., Paknahad, M., & Khandadash, S. (2022). Effects of Radiofrequency Electromagnetic Fields Emitted from Mobile Phones and Wi-Fi Router on the Growth Rate and Susceptibility of Enterococcus faecalis to Antibiotics. Journal of Biomedical Physics & Engineering, 12(4), 387–394.  

 

Movahedi, M. M., Nouri, F., Tavakoli Golpaygani, A., Ataee, L., Amani, S., & Taheri, M. (2019). Antibacterial Susceptibility Pattern of the Pseudomonas aeruginosa and Staphylococcus aureus after Exposure to Electromagnetic Waves Emitted from Mobile Phone Simulator. Journal of Biomedical Physics & Engineering, 9(6), 637–646.  

 

Nakouti, I., Hobbs, G., Teethaisong, Y., & Phipps, D. (2017). A demonstration of athermal effects of continuous microwave irradiation on the growth and antibiotic sensitivity of Pseudomonas aeruginosa PAO1. Biotechnology Progress, 33(1), 37–44.  

 

Pegios, A., Kavvadas, D., Ζarras, K., Mpani, K., Soukiouroglou, P., Charalampidou, S., Vagdatli, E., & Papamitsou, T. (2022). The Effect of Electromagnetic Radiation Transmitted from Routers on Antibiotic Susceptibility of Bacterial Pathogens. Journal of Biomedical Physics & Engineering, 12(4), 327–338. 

 

Taheri, M., Mortazavi, S. M. J., Moradi, M., Mansouri, S., Hatam, G. R., & Nouri, F. (2017). Evaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria monocytogenes and Escherichia coli. Dose-Response: A Publication of International Hormesis Society, 15(1), 1559325816688527.  

 

Torgomyan, H., & Trchounian, A. (2012). Escherichia coli membrane-associated energy-dependent processes and sensitivity toward antibiotics changes as responses to low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies. Cell Biochemistry and Biophysics, 62(3), 451–461. 

 

Flora and Fauna 

 

  1. Lázaro, A. Chroni, T. Tscheulin, J. Devalez, C. Matsoukas, & T. Petanidou. (2016). Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. Journal of Insect Conservation, 20(2), 315–324. https://doi.org/10.1007/s10841-016-9868-8

 

Adelaja, O. J., Ande, A. T., Abdulraheem, G. D., Oluwakorode, I. A., Oladipo, O. A., & Oluwajobi, A. O. (2021). Distribution, diversity and abundance of some insects around a telecommunication mast in Ilorin, Kwara State, Nigeria. Bulletin of the National Research Centre, 45(1), 222.  

 

Balmori, A. (2006). The incidence of electromagnetic pollution on the amphibian decline: Is this an important piece of the puzzle? Toxicological & Environmental Chemistry, 88(2), 287–299. 

 

Balmori A. (2010). Mobile phone mast effects on common frog (Rana temporaria) tadpoles: the city turned into a laboratory. Electromagn Biol Med. Jun;29 (1-2): 31-5.  

 

Balmori, A. (2015). Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Science of The Total Environment, 518–519, 58–60.  

 

Balmori A. (2014). Electrosmog and species conservation. Science of The Total Environment,  496:314-316 

 

Balmori A. (2022). Corneal opacity in Northern Bald Ibises (Geronticus eremita) equipped with radio transmitters. Electromagnetic Biol Med.174-176.  

 

Balmori A. (2021) Electromagnetic radiation as an emerging driver factor for the decline of insects. Science of the Total Environment. 767: 144913 

 

Borre, E. D., Joseph, W., Aminzadeh, R., Müller, P., Boone, M. N., Josipovic, I., Hashemizadeh, S., Kuster, N., Kühn, S., & Thielens, A. (2021). Radio-frequency exposure of the yellow fever mosquito (A. aegypti) from 2 to 240 GHz. PLOS Computational Biology, 17(10), e1009460. 

 

Cucurachi, S., Tamis, W. L. M., Vijver, M. G., Peijnenburg, W. J. G. M., Bolte, J. F. B., & de Snoo, G. R. (2013). A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environment International, 51, 116–140.  

 

Favre, D. (2011). Mobile phone-induced honeybee worker piping. Apidologie, 42(3), 270–279.  

 

Fedele, G., Edwards, M. D., Bhutani, S., Hares, J. M., Murbach, M., Green, E. W., Dissel, S., Hastings, M. H., Rosato, E., & Kyriacou, C. P. (2014). Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genetics, 10(12), e1004804.  

 

Fernie, K. J., & Reynolds, S. J. (2005). The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: A review. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 8(2), 127–140.  

 

Halgamuge, M. N. (2017). Review: Weak radiofrequency radiation exposure from mobile phone radiation on plants. Electromagnetic Biology and Medicine, 36(2), 213–235. 

 

Halgamuge, M. N., Yak, S. K., & Eberhardt, J. L. (2015). Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station. Bioelectromagnetics, 36(2), 87–95. 

 

Haggerty, K. (2010). Adverse Influence of Radio Frequency Background on Trembling Aspen Seedlings: Preliminary Observations. International Journal of Forestry Research, 836278.  

 

Hutchison, Z. L., Gill, A. B., Sigray, P., He, H., & King, J. W. (2020). Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Scientific Reports, 10(1), 4219.

 

Kaur, S., Vian, A., Chandel, S., Singh, D. H., Batish, D., & Kohli, R. (2021). Sensitivity of plants to high frequency electromagnetic radiation: Cellular mechanisms and morphological changes. Reviews in Environmental Science and Bio/Technology, 20.  

 

Lee, K.-S., Choi, J.-S., Hong, S.-Y., Son, T.-H., & Yu, K. (2008). Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics, 29(5), 371–379. 

 

Levitt BB, Lai HC and Manville AM II (2022) Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach. Front. Public Health 10:1000840. doi: 10.3389/fpubh.2022.1000840

 

Levitt, B. B., Lai, H. C., & Manville, A. M. (2021). Effects of non-ionizing electromagnetic fields on flora and fauna, Part 3. Exposure standards, public policy, laws, and future directions. Reviews on Environmental Health.  

 

Levitt, B. B., Lai, H. C., & Manville, A. M. (2022a). Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. Reviews on Environmental Health, 37(1), 81–122. 

 

Levitt, B. B., Lai, H. C., & Manville, A. M. (2022b). Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: How species interact with natural and man-made EMF. Reviews on Environmental Health, 37(3), 327–406.  

 

Li, S.-S., Zhang, Z.-Y., Yang, C.-J., Lian, H.-Y., & Cai, P. (2013). Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 758(1–2), 95–103. 

 

Lupi, D., Palamara Mesiano, M., Adani, A., Benocci, R., Giacchini, R., Parenti, P., Zambon, G., Lavazza, A., Boniotti, M. B., Bassi, S., Colombo, M., & Tremolada, P. (2021a). Combined Effects of Pesticides and Electromagnetic-Fields on Honeybees: Multi-Stress Exposure. Insects, 12(8), 716.  

 

Manta, A. K., Papadopoulou, D., Polyzos, A. P., Fragopoulou, A. F., Skouroliakou, A. S., Thanos, D., Stravopodis, D. J., & Margaritis, L. H. (2017). Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster. Fly, 11(2), 75–95. 

 

Mahmoud EA and Gabarty A (2021) “Impact of Electromagnetic Radiation on Honey Stomach Ultrastructure and the Body Chemical Element Composition of Apis mellifera,” African Entomology 29(1), 32-41, (23 March).

 

Migdał, P., Berbeć, E., Bieńkowski, P., Plotnik, M., Murawska, A., & Latarowski, K. (2022b). Exposure to Magnetic Fields Changes the Behavioral Pattern in Honeybees (Apis mellifera L.) under Laboratory Conditions. Animals: An Open Access Journal from MDPI, 12(7), 855.  

 

Odemer, R., & Odemer, F. (2019). Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. Science of The Total Environment, 661, 553–562.

 

Santhosh Kumar, S. (2018). Colony Collapse Disorder (CCD) in Honey BeesCaused by EMF Radiation. Bioinformation, 14(9), 421–424. 

 

Schwarze, S., Schneider, N.-L., Reichl, T., Dreyer, D., Lefeldt, N., Engels, S., Baker, N., Hore, P. J., & Mouritsen, H. (2016). Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields. Frontiers in Behavioral Neuroscience, 10.

 

Scott, K., Harsanyi, P., Easton, B. A. A., Piper, A. J. R., Rochas, C. M. V., & Lyndon, A. R. (2021). Exposure to Electromagnetic Fields (EMF) from Submarine Power Cables Can Trigger Strength-Dependent Behavioural and Physiological Responses in Edible Crab, Cancer pagurus (L.). Journal of Marine Science and Engineering, 9(7), Article 7. 

 

Soran, M.-L., Stan, M., Niinemets, Ü., & Copolovici, L. (2014). Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. Journal of Plant Physiology, 171(15), 1436–1443. 

 

Stefi, A. L., Margaritis, L. H., & Christodoulakis, N. S. (2016). The effect of the non ionizing radiation on cultivated plants of Arabidopsis thaliana (Col.). Flora, 223, 114–120. 

 

Thielens, A., Bell, D., Mortimore, D. B., Greco, M. K., Martens, L., & Joseph, W. (2018). Exposure of Insects to Radio-Frequency Electromagnetic Fields from 2 to 120 GHz. Scientific Reports, 8(1), 3924. 

 

Thielens A, Greco MK, Verloock L, Martens L, Joseph W. Radio-Frequency Electromagnetic Field Exposure of Western Honey Bees. Scientific Reports. 2020 Jan 16;10(1):461.  

 

Waldmann-Selsam, C., Balmori-de la Puente, A., Breunig, H., & Balmori, A. (2016). Radiofrequency radiation injures trees around mobile phone base stations. Science of The Total Environment, 572, 554–569. 

 

Wang, Y., Jiang, Z., Zhang, L., Zhang, Z., Liao, Y., & Cai, P. (2022b). 3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster. Environmental Pollution (Barking, Essex: 1987), 294, 118646. 

 

Wang, Y., Zhang, H., Zhang, Z., Sun, B., Tang, C., Zhang, L., Jiang, Z., Ding, B., Liao, Y., & Cai, P. (2021). Simulated mobile communication frequencies (3.5 GHz) emitted by a signal generator affects the sleep of Drosophila melanogaster. Environmental Pollution (Barking, Essex: 1987), 283, 117087. 

 

Wiltschko, R., Thalau, P., Gehring, D., Nießner, C., Ritz, T., & Wiltschko, W. (2015). Magnetoreception in birds: The effect of radio-frequency fields. Journal of The Royal Society Interface, 12(103), 20141103.  

 

Share
Share