Select Page
Share

“There is enough evidence to indicate we may be damaging non-human species at ecosystem and biosphere levels across all taxa from rising background levels of anthropogenic non-ionizing electromagnetic fields (EMF) from 0Hz to 300 GHz….Any existing exposure standards are for humans only; wildlife is unprotected…”

Levitt BB, Lai HC and Manville AM II (2022) Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach. Front. Public Health 10:1000840. doi: 10.3389/fpubh.2022.1000840

Accumulated research indicates that electromagnetic radiation should be considered seriously as a complementary driver for the dramatic decline in insects, acting in synergy with agricultural intensification, pesticides, invasive species and climate change.  The research review  “Electromagnetic radiation as an emerging driver factor for the decline of insects” published in Science of the Total Environment found “sufficient evidence” of effects in insects including impacts to flight, foraging and feeding, short-term memory and mortality. (Balmori 2021)

Flora and Fauna  

REVIEW PAPERS

Balmori, A. (2015). Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Science of The Total Environment, 518–519, 58–60.  

Balmori A. (2014). Electrosmog and species conservation. Science of The Total Environment,  496:314-316 

Cucurachi, S., Tamis, W. L. M., Vijver, M. G., Peijnenburg, W. J. G. M., Bolte, J. F. B., & de Snoo, G. R. (2013). A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environment International, 51, 116–140.  

Levitt BB, Lai HC and Manville AM II (2022) Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach. Front. Public Health 10:1000840. doi: 10.3389/fpubh.2022.1000840

Levitt, B. B., Lai, H. C., & Manville, A. M. (2021). Effects of non-ionizing electromagnetic fields on flora and fauna, Part 3. Exposure standards, public policy, laws, and future directions. Reviews on Environmental Health.  

Levitt, B. B., Lai, H. C., & Manville, A. M. (2022a). Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. Reviews on Environmental Health, 37(1), 81–122. 

Levitt, B. B., Lai, H. C., & Manville, A. M. (2022b). Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: How species interact with natural and man-made EMF. Reviews on Environmental Health, 37(3), 327–406.  

BIRDS

Augustianath, T., Evans, D. A., & Anisha, G. S. (2023). Teratogenic effects of radiofrequency electromagnetic radiation on the embryonic development of chick: A study on morphology and hatchability. Research in veterinary science, 159, 93–100. 

Balmori A. (2022). Corneal opacity in Northern Bald Ibises (Geronticus eremita) equipped with radio transmitters. Electromagnetic Biol Med.174-176.  

Islam, M. S., Islam, M. M., Rahman, M. M., & Islam, K. (2023). 4G mobile phone radiation alters some immunogenic and vascular gene expressions, and gross and microscopic and biochemical parameters in the chick embryo model. Veterinary medicine and science, 10.1002/vms3.1273. Advance online publication.

Leberecht, B., Wong, S. Y., Satish, B., Döge, S., Hindman, J., Venkatraman, L., Apte, S., Haase, K., Musielak, I., Dautaj, G., Solov’yov, I. A., Winklhofer, M., Mouritsen, H., & Hore, P. J. (2023). Upper bound for broadband radiofrequency field disruption of magnetic compass orientation in night-migratory songbirds. Proceedings of the National Academy of Sciences of the United States of America, 120(28), e2301153120.

Fernie, K. J., & Reynolds, S. J. (2005). The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: A review. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 8(2), 127–140.  

Schwarze, S., Schneider, N.-L., Reichl, T., Dreyer, D., Lefeldt, N., Engels, S., Baker, N., Hore, P. J., & Mouritsen, H. (2016). Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields. Frontiers in Behavioral Neuroscience, 10.

Tonelli, B. A., Youngflesh, C., & Tingley, M. W. (2023). Geomagnetic disturbance associated with increased vagrancy in migratory landbirds. Scientific Reports, 13(1), Article 1. 

Wiltschko, R., Thalau, P., Gehring, D., Nießner, C., Ritz, T., & Wiltschko, W. (2015). Magnetoreception in birds: The effect of radio-frequency fields. Journal of The Royal Society Interface, 12(103), 20141103.  

INSECTS

Lázaro, A. Chroni, T. Tscheulin, J. Devalez, C. Matsoukas, & T. Petanidou. (2016). Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. Journal of Insect Conservation, 20(2), 315–324. https://doi.org/10.1007/s10841-016-9868-8

Adelaja, O. J., Ande, A. T., Abdulraheem, G. D., Oluwakorode, I. A., Oladipo, O. A., & Oluwajobi, A. O. (2021). Distribution, diversity and abundance of some insects around a telecommunication mast in Ilorin, Kwara State, Nigeria. Bulletin of the National Research Centre, 45(1), 222.  

Balmori A. (2021) Electromagnetic radiation as an emerging driver factor for the decline of insects. Science of the Total Environment. 767: 144913 

Borre, E. D., Joseph, W., Aminzadeh, R., Müller, P., Boone, M. N., Josipovic, I., Hashemizadeh, S., Kuster, N., Kühn, S., & Thielens, A. (2021). Radio-frequency exposure of the yellow fever mosquito (A. aegypti) from 2 to 240 GHz. PLOS Computational Biology, 17(10), e1009460. 

De Paepe S, De Borre E, Toribio Carvajal D, Bell D, Thielens A. (2022) Pilot study of a new methodology to study the development of the blue bottle fly (Calliphora vomitoria) under exposure to radio-frequency electromagnetic fields at 5.4 GHz. Int J Radiat Biol. Aug 24:1-17 

Favre, D. (2011). Mobile phone-induced honeybee worker piping. Apidologie, 42(3), 270–279.  

Fedele, G., Edwards, M. D., Bhutani, S., Hares, J. M., Murbach, M., Green, E. W., Dissel, S., Hastings, M. H., Rosato, E., & Kyriacou, C. P. (2014). Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genetics, 10(12), e1004804.  

Lee, K.-S., Choi, J.-S., Hong, S.-Y., Son, T.-H., & Yu, K. (2008). Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics, 29(5), 371–379. 

Li, S.-S., Zhang, Z.-Y., Yang, C.-J., Lian, H.-Y., & Cai, P. (2013). Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 758(1–2), 95–103. 

Lopatina, N. G., Zachepilo, T. G., Kamyshev, N. G., Dyuzhikova, N. A., & Serov, I. N. (2019). Effect of Non-Ionizing Electromagnetic Radiation on Behavior of the Honeybee, Apis mellifera L. (Hymenoptera, Apidae). Entomological Review, 99(1), 24–29. 

Lupi, D., Palamara Mesiano, M., Adani, A., Benocci, R., Giacchini, R., Parenti, P., Zambon, G., Lavazza, A., Boniotti, M. B., Bassi, S., Colombo, M., & Tremolada, P. (2021a). Combined Effects of Pesticides and Electromagnetic-Fields on Honeybees: Multi-Stress Exposure. Insects, 12(8), 716.  

Manta, A. K., Papadopoulou, D., Polyzos, A. P., Fragopoulou, A. F., Skouroliakou, A. S., Thanos, D., Stravopodis, D. J., & Margaritis, L. H. (2017). Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster. Fly, 11(2), 75–95. 

Mahmoud EA and Gabarty A (2021) “Impact of Electromagnetic Radiation on Honey Stomach Ultrastructure and the Body Chemical Element Composition of Apis mellifera,” African Entomology 29(1), 32-41, (23 March).

Molina-Montenegro MA, Acuña-Rodríguez IS, Ballesteros GI, Baldelomar M, Torres-Díaz C, Broitman BR, Vázquez DP. (2023) Electromagnetic fields disrupt the pollination service by honeybees. Sci Adv. May 12;9(19)

Migdał, P., Berbeć, E., Bieńkowski, P., Plotnik, M., Murawska, A., & Latarowski, K. (2022b). Exposure to Magnetic Fields Changes the Behavioral Pattern in Honeybees (Apis mellifera L.) under Laboratory Conditions. Animals: An Open Access Journal from MDPI, 12(7), 855.  

Manuel Reategui-Inga, Eli Morales Rojas, Daniel Tineo, Marcelino Jorge Araníbar-Araníbar, Wilfredo Alva Valdiviezo, Casiano Aguirre Escalante and Sandro Junior Ruiz Castre, 2023. Effects of Artificial Electromagnetic Fields on Bees: A Global Review. Pakistan Journal of Biological Sciences, 26: 23-32.

Migdal, P., Bieńkowski, P., Cebrat, M., Berbeć, E., Plotnik, M., Murawska, A., Sobkiewicz, P., Łaszkiewicz, A., & Latarowski, K. (2023). Exposure to a 900 MHz electromagnetic field induces a response of the honey bee organism on the level of enzyme activity and the expression of stress-related genes. PloS one, 18(5), e0285522.

Nikita, Grover, A., Kalia, P., Sinha, R., & Garg, P. (2022). Colony collapse disorder: A peril to apiculture. Journal of Applied and Natural Science, 14(3), 729–739. https://doi.org/10.31018/jans.v14i3.3502

Odemer, R., & Odemer, F. (2019). Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. Science of The Total Environment, 661, 553–562.

Santhosh Kumar, S. (2018). Colony Collapse Disorder (CCD) in Honey BeesCaused by EMF Radiation. Bioinformation, 14(9), 421–424. 

Thielens, A., Bell, D., Mortimore, D. B., Greco, M. K., Martens, L., & Joseph, W. (2018). Exposure of Insects to Radio-Frequency Electromagnetic Fields from 2 to 120 GHz. Scientific Reports, 8(1), 3924. 

Thielens A, Greco MK, Verloock L, Martens L, Joseph W. Radio-Frequency Electromagnetic Field Exposure of Western Honey Bees. Scientific Reports. 2020 Jan 16;10(1):461.  

Wang, Y., Jiang, Z., Zhang, L., Zhang, Z., Liao, Y., & Cai, P. (2022b). 3.5-GHz radiofrequency electromagnetic radiation promotes the development of Drosophila melanogaster. Environmental Pollution (Barking, Essex: 1987), 294, 118646. 

Wang, Y., Zhang, H., Zhang, Z., Sun, B., Tang, C., Zhang, L., Jiang, Z., Ding, B., Liao, Y., & Cai, P. (2021). Simulated mobile communication frequencies (3.5 GHz) emitted by a signal generator affects the sleep of Drosophila melanogaster. Environmental Pollution (Barking, Essex: 1987), 283, 117087. 

Wyszkowska J, Maliszewska J, Gas P. Metabolic and Developmental Changes in Insects as Stress-Related Response to Electromagnetic Field Exposure. Applied Sciences. 2023; 13(17):9893. 

Wyszkowska J, Kobak J, Aonuma H. (2023). Electromagnetic field exposure affects the calling song, phonotaxis, and level of biogenic amines in crickets. Environ Sci Pollut Res Int.

 

PLANTS

Abdelhaliem, E., Abdalla, H. M., Bolbol, A. A., & Shehata, R. S. (2023). Assessment of protein and DNA polymorphisms in corn (Zea mays) under the effect of non-ionizing electromagnetic radiation. Caryologia, 75(4).  

Halgamuge, M. N., & Davis, D. (2019). Lessons learned from the application of machine learning to studies on plant response to radio-frequency. Environmental research, 178, 108634. 

Halgamuge, M. N. (2017). Review: Weak radiofrequency radiation exposure from mobile phone radiation on plants. Electromagnetic Biology and Medicine, 36(2), 213–235. 

Halgamuge, M. N., Yak, S. K., & Eberhardt, J. L. (2015). Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station. Bioelectromagnetics, 36(2), 87–95. 

Haggerty, K. (2010). Adverse Influence of Radio Frequency Background on Trembling Aspen Seedlings: Preliminary Observations. International Journal of Forestry Research, 836278.  

Kaur, S., Vian, A., Chandel, S., Singh, D. H., Batish, D., & Kohli, R. (2021). Sensitivity of plants to high frequency electromagnetic radiation: Cellular mechanisms and morphological changes. Reviews in Environmental Science and Bio/Technology, 20.  

Marek Czerwiński, Alain Vian, Ben A. Woodcock, Piotr Goliński, Laura Recuero Virto, Łukasz Januszkiewicz. (2023). Do electromagnetic fields used in telecommunications affect wild plant species? A control impact study conducted in the field. Ecological Indicators. Volume 150. 110267.

Soran, M.-L., Stan, M., Niinemets, Ü., & Copolovici, L. (2014). Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. Journal of Plant Physiology, 171(15), 1436–1443. 

Stefi, A. L., Margaritis, L. H., & Christodoulakis, N. S. (2016). The effect of the non ionizing radiation on cultivated plants of Arabidopsis thaliana (Col.). Flora, 223, 114–120. 

Tran, N. T., Jokic, L., Keller, J., Geier, J. U., & Kaldenhoff, R. (2023). Impacts of Radio-Frequency Electromagnetic Field (RF-EMF) on Lettuce (Lactuca sativa)-Evidence for RF-EMF Interference with Plant Stress Responses. Plants (Basel, Switzerland), 12(5), 1082. 

Waldmann-Selsam, C., Balmori-de la Puente, A., Breunig, H., & Balmori, A. (2016). Radiofrequency radiation injures trees around mobile phone base stations. Science of The Total Environment, 572, 554–569. 

Zhong, Z., Wang, X., Yin, X., Tian, J., & Komatsu, S. (2021). Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves. International Journal of Molecular Sciences, 22(22), Article 22.

AMPHIBIAN

Balmori A. (2010). Mobile phone mast effects on common frog (Rana temporaria) tadpoles: the city turned into a laboratory. Electromagn Biol Med. Jun;29 (1-2): 31-5.  

Balmori, A. (2006). The incidence of electromagnetic pollution on the amphibian decline: Is this an important piece of the puzzle? Toxicological & Environmental Chemistry, 88(2), 287–299. 

MARINE 

Hutchison, Z. L., Gill, A. B., Sigray, P., He, H., & King, J. W. (2020). Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Scientific Reports, 10(1), 4219.

Scott, K., Harsanyi, P., Easton, B. A. A., Piper, A. J. R., Rochas, C. M. V., & Lyndon, A. R. (2021). Exposure to Electromagnetic Fields (EMF) from Submarine Power Cables Can Trigger Strength-Dependent Behavioural and Physiological Responses in Edible Crab, Cancer pagurus (L.). Journal of Marine Science and Engineering, 9(7), Article 7. 

Oliva, M., De Marchi, L., Cuccaro, A., Fumagalli, G., Freitas, R., Fontana, N., Raugi, M., Barmada, S., & Pretti, C. (2023). Introducing energy into marine environments: A lab-scale static magnetic field submarine cable simulation and its effects on sperm and larval development on a reef forming serpulid. Environmental pollution (Barking, Essex : 1987), 328, 121625.

Share
Share