5G Cellular Standards. Total Radiobiological Assessment of the Danger of Planetary Electromagnetic Radiation Exposure to the Population (in Russian)
G834 Yu.G. Grigoriev, A.S. Samoylov 5G-cellular standards. Total radiobiological assessment of the danger of planetary electromagnetic radiation exposure to the population — М.: SRC — FMBC, 2020.
Open access book (in Russian; 196 pp. pdf): http://bit.ly/Grigoriev5G
Abstract
The book discusses the implementation of the 5G-standard in the cellular communication system. 5G-technology works with millimeter waves (MMW) with simultaneous distribution of the IoT (Internet of Things) program — Internet connection between «things», both for home use, and other objects, for example, in transport, in production. MMW are easily shielded. Given this, only the skin and sclera of the eyes will be affected.
A new radiobiological approach to hazard assessment of the 5G-standard is presented. The significance of radiobiological criteria and the degree of risk are considered, taking into account the appearance of new critical organs and the load on existing critical organs and systems during lifetime exposure to EMF in the population. This point of view of the authors is used to assess the total radiobiological danger of planetary electromagnetic radiation exposure to the population.
Ways of possible reduction of the electromagnetic load on the population are suggested.
Ways of possible reduction of the electromagnetic load on the population are suggested.
Relevance of the book by L.A. Ilyin, academician of RAS
Both in Russia and in countries abroad, there have been active discussions over the past few years about a promising proposal for optimizing cellular communications — the planetary introduction of a new 5G-standard that will guarantee fast transmission of a large amount of data. For this purpose, millimeter waves (MMW) will be used.
The techno-economic advantage of this offer is obvious and widely reported by the media in many countries. However, the degree of danger of this type of electromagnetic radiation to public health and the environment remains unclear.
Unfortunately, the appeals of scientists and medical professionals to the UN and the European Union about the need for preliminary medical and biological research before implementing the 5G-standard remain beyond real implementation. A number of countries refuse to place the 5G-standard on their territory.
Unfortunately, the appeals of scientists and medical professionals to the UN and the European Union about the need for preliminary medical and biological research before implementing the 5G-standard remain beyond real implementation. A number of countries refuse to place the 5G-standard on their territory.
Book by Yu.G. Grigoriev and A.S. Samoylov «5G-CELLULAR STANDARD. TOTAL RADIOBIOLOGICAL ASSESSMENT OF THE DANGER OF PLANETARY ELECTROMAGNETIC RADIATION EXPOSURE TO THE POPULATION» considers the implementation of the 5G-standard in the cellular communication system. Unlike existing wireless technologies 2G, 3G and 4G, which use electromagnetic fields of the radio frequency range, the 5G-standard works with millimeter waves with simultaneous distribution of the IoT (Internet of Things) program — Internet communication between «objects», both for home use and other objects, for example, in transport and in production.
For stable delivery of MMW to the entire territory of our planet, Earth satellites are used. It is planned to launch 4,425 satellites for the implementation of the universal Internet access program, but there are already 800 satellites in space under this program. It should be noted that there are currently several thousand satellites in orbit, which is of great concern to astronomers and the security service of manned space flights in Russia.
In fact, the entire population will be trapped for life in the electromagnetic grid of millimeter waves and no one will be able to avoid their impact.
MMW are easily shielded. Naturally, to cover a certain area with a millimeter cell, you will need to increase the number of base stations (BS). For example, with a cell radius of only 20 meters, you will need about 800 base stations per square kilometer and located 3-5 meters from the consumer. This is in sharp contrast, for example, with 3G and 4G-standards, which use large cells and have ranges from 2 to 15 km or more.
Given that MMW is absorbed in biotissues at a depth of up to 2 mm, only the skin and sclera of the eyes will be affected by them. Therefore, the authors rightly believe that when assessing the risk of MMV, it is necessary to take into account the appearance of new critical organs — the skin and eyes. The skin is a very complex biostructure, has a large number of receptors and is actually a «bio-relay» between the external environment and the functional state of the body.
Naturally, the introduction of 5G-technology raises new questions. First, the technical part of providing this type of communication. A significantly larger number of micro-antenna base station antennas per unit area with satellite support is needed. Second, there is a lack of a consistent methodology for hygienic rationing. Third, there are only assumptions about possible biological effects in the lifetime impact of MMW on populations and ecosystems. There are no data on possible bioeffects with constant exposure to MMW on the skin and sclera of the eyes. Targeted research is still not carried out both in Russia and abroad.
There are different perspectives on the assessment of the dangers of this new technology. The International Commission on Non-ionizing Radiation Protection (ICNIRP) and the Federal Communications Commission (FCC) assess the hazard only by adding the absorbed dose to existing standards. This is a small addition, and therefore the existing FCC and ICNIRP standards, approved in 1996, are not being revised. International standards, despite criticism from the scientific community and the European Union, have remained unchanged for more than 20 years.
The authors of the reviewed book consider this approach erroneous, because in this case, the radiation load on new critical organs — the skin and eyes–is not taken into account. They considered the significance of radiobiological criteria and the degree of risk, taking into account the emergence of new critical organs and the load on existing critical organs and systems, taking into account the lifetime exposure of the population to EMF. From this point of view, the book presents an assessment of the total radiobiological danger of planetary electromagnetic radiation exposure to the population.
The book offers new ways to reduce the electromagnetic load, taking into account 5G on the population. It is necessary to explain to the population that EMF is considered harmful and their safety is regulated by certain hygiene standards.
Exposure to EMF that exceeds these standards may negatively affect the health of the mobile user. In this regard, the population should strictly follow the existing hygiene recommendations. However, most people perceive gadgets simply as an element of convenient everyday communication without time limits, as a toy for children, for entertainment, using cellular communication without the need. The population should understand that by violating hygiene recommendations, they are putting them-selves at a certain risk. This danger must be persistently explained and, above all, through the media. It is recommended to introduce such a concept as «The conscious risk». This is the first generalization on the problem of the danger of 5G-technologies, both in Russia and abroad. The edition of the book is timely.
Open access book (in Russian; 196 pp. pdf): http://bit.ly/Grigoriev5G
—
My comments: A considerable amount of research suggests that exposure to millimeter waves can affect many organs of the body, not just the skin and the eyes.