In parallel to the explosive growth in the use of EMF-dependent gadgets the incidence of autism spectrum disorder (ASD) has increased!

IS IT POSSIBLE THAT EMF CONTRIBUTES TO ASD?

Does EMF has an impact on BRAIN development?

What is the impact of EMF on brain development?

EMF	EMF target	Animal	Effect	Reference	comments
900MHz 6w/Kg 1h/day,28 days EMF	Hippocampal pyramidal cells	3.3Months old Female Rat	Neuronal Cells Die	Bas, et al,(2009) Brain Res, 1265:178-185	
900MHz 1h/day E13- E21, analysis P32 EMF	Offspring cerebellum Purkinje cells	Pregnant Rat E13-E21	Neuronal Cells Die	Odaci, E et al (2015) J Chem. Neuroanat. 75:(B)105-110.	
50Hz (ELF-EMF) 1-7h/day 7days analysis Day37	Hippocampus, dentate gyrus	1month old C57Bl mice	Neurogenesis differentiation	CuCCurazzu, B. et al (2010) Exp. Neurol. 226:173-182.	Ca _v 1 up
50Hz (ELF-EMF) In culture Day2, 6, 12	P0, cortices NSC In culture	P0, CD-1 mice	Neurogenesis differentiation	Piacentini, R. et al (2008) J Cell. Physiol. 215:129-139.	Ca _v 1 influx

The Autistic Neuron: Troubled Translation?

Raymond J. Kelleher III1, , , Mark F. Bear2,

Cell Volume 135, Issue 3, 31 October 2008, Pages 401–406

Dysregulation of mRNA Localization and Translation in Genetic Disease

The PI3K/mammalian target of rapamycin (mTOR) pathway is important for local protein synthesis and regulated by FMRP: implications for FXS (fragile X) and other **autism spectrum disorders**

Eric T. et al Journal of Neuroscience 2016, 36 (45) 11418-426

		Single-Gene Disorders with High Rates of Autism							
	GENE	DISORDER	RATE OF	RATE IN	MR	GENE			
			AUTISM	AUTISM		FUNCTION			
	FMR1	Fragile X syndrome	15-30%	2-5%	+	Translation			
*=affects						repressor 🏾 🇮			
	TSC1/2	Tuberosclerosis	25-60%	1-4%	+	Inhibitor of			
translation						mTORC1 *			
	PTEN	PTEN Hamartoma	ND	1%	+	Inhibitor of			
		ASD with				PI3K/mTORC1			
		macrocephaly				signaling 🔻			
? =indirect	NF1	Neurofibromatosis	4%	0-4%	+	Ras GAP 🖕			
		type1				ŕ			
	MECP2	Rett's syndrome	100%	2%	+	Global			
						transcriptional			
						repressor 🌴			
	UBE3A	Angelman's	40%	1%	+	E3 ubiquitin			
		syndrome				ligase			
	CACNA1C	Timothy's	60%	<1%	+	L-type voltage			
		syndrome				gated calcium			
						channel 🔈			
						(CaV1.2)			
	NLGN3/4	Familial ASD	ND	<1%	+	Synaptic			
						adhesion			
	NRXN1	Familial ASD	ND	<1%	+	Synaptic			
						adhesion			
	SHANK3	Familial ASD	ND	<1%	+	PSD scaffolding			
		(microdeletion							
		syndrome(22q13)							

Too much dendrites=over connectivity= Deranged pruning=failure to process Information= ASD.

* = Antagonized by oxytocin

Kelleher & Bear (2008), Cell 135:401-6

Extremely low frequency/EMF?

Control of mRNA translation and brain wiring

Suggested investigation

Titration of EMF on neural stem cells to determine conditions for :

A) In culture

1)Overgrowth of dendrites, (hyper-connectivity)

2) Proteomic and other protein-level analysis (controls vs hyper-connectivity)

B) In vivo

1) Screen rats for dendrite overgrowth (EMF conditions)

from pregnancy to weaning in pups

- 2) Use information gained by in-culture studies to inhibit EMF induced hyper-connectivity
- 3) Accompany biological effects by behavioral testing in vivo.