ENVIRONMENTAL RESEARCH JOURNAL SPECIAL ISSUE WIRELESS RADIATION AND HEALTH

Share

ENVIRONMENTAL RESEARCH JOURNAL SPECIAL ISSUE

WIRELESS RADIATION AND HEALTH

Edited by: Devra Davis, Anthony B. Miller, Iris Udasin, Ronald Melnick

2018

 

 

Michael Peleg, Or Nativ, Elihu D. Richter, Radio frequency radiation-related cancer: assessing causation in the occupational/military setting, Environmental Research, Volume 163, 2018, Pages 123-133, ISSN 0013-9351

  • Abstract: Background and aim
    We reexamine whether radio frequency radiation (RFR) in the occupational and military settings is a human carcinogen.
    Methods
    We extended an analysis of an already-reported case series of patients with cancer previously exposed to whole-body prolonged RFR, mainly from communication equipment and radar. We focused on hematolymphatic (HL) cancers. We used analysis by percentage frequency (PF) of a cancer type, which is the proportion of a specific cancer type relative to the total number of cancer cases. We also examined and analyzed the published data on three other cohort studies from similar military settings from different countries.
    Results
    The PF of HL cancers in the case series was very high, at 40% with only 23% expected for the series age and gender profile, confidence interval CI95%: 26–56%, p<0.01, 19 out of 47 patients had HL cancers. We also found high PF for multiple primaries. As for the three other cohort studies: In the Polish military sector, the PF of HL cancers was 36% in the exposed population as compared to 12% in the unexposed population, p<0.001. In a small group of employees exposed to RFR in Israeli defense industry, the PF of HL cancers was 60% versus 17% expected for the group age and gender profile, p<0.05. In Belgian radar battalions the HL PF was 8.3% versus 1.4% in the control battalions as shown in a causes of deaths study and HL cancer mortality rate ratio was 7.2 and statistically significant. Similar findings were reported on radio amateurs and Korean war technicians. Elevated risk ratios were previously reported in most of the above studies.
    Conclusions
    The consistent association of RFR and highly elevated HL cancer risk in the four groups spread over three countries, operating different RFR equipment types and analyzed by different research protocols, suggests a cause-effect relationship between RFR and HL cancers in military/occupational settings. While complete measurements of RFR exposures were not available and rough exposure assessments from patients interviews and from partial exposure data were used instead, we have demonstrated increased HL cancers in occupational groups with relatively high RFR exposures. Our findings, combined with other studies, indicate that exposures incurred in the military settings evaluated here significantly increased the risk of HL cancers. Accordingly, the RFR military exposures in these occupations should be substantially reduced and further efforts should be undertaken to monitor and measure those exposures and to follow cohorts exposed to RFR for cancers and other health effects. Overall, the epidemiological studies on excess risk for HL and other cancers together with brain tumors in cellphone users and experimental studies on RFR and carcinogenicity make a coherent case for a cause-effect relationship and classifying RFR exposure as a human carcinogen (IARC group 1).

 

Noa Betzalel, Paul Ben Ishai, Yuri Feldman, The human skin as a sub-THz receiver – Does 5G pose a danger to it or not?, Environmental Research, Volume 163, 2018, Pages 208-216, ISSN 0013-9351

  • Abstract: In the interaction of microwave radiation and human beings, the skin is traditionally considered as just an absorbing sponge stratum filled with water. In previous works, we showed that this view is flawed when we demonstrated that the coiled portion of the sweat duct in upper skin layer is regarded as a helical antenna in the sub-THz band. Experimentally we showed that the reflectance of the human skin in the sub-THz region depends on the intensity of perspiration, i.e. sweat duct’s conductivity, and correlates with levels of human stress (physical, mental and emotional). Later on, we detected circular dichroism in the reflectance from the skin, a signature of the axial mode of a helical antenna. The full ramifications of what these findings represent in the human condition are still unclear. We also revealed correlation of electrocardiography (ECG) parameters to the sub-THz reflection coefficient of human skin. In a recent work, we developed a unique simulation tool of human skin, taking into account the skin multi-layer structure together with the helical segment of the sweat duct embedded in it. The presence of the sweat duct led to a high specific absorption rate (SAR) of the skin in extremely high frequency band. In this paper, we summarize the physical evidence for this phenomenon and consider its implication for the future exploitation of the electromagnetic spectrum by wireless communication. Starting from July 2016 the US Federal Communications Commission (FCC) has adopted new rules for wireless broadband operations above 24 GHz (5 G). This trend of exploitation is predicted to expand to higher frequencies in the sub-THz region. One must consider the implications of human immersion in the electromagnetic noise, caused by devices working at the very same frequencies as those, to which the sweat duct (as a helical antenna) is most attuned. We are raising a warning flag against the unrestricted use of sub-THz technologies for communication, before the possible consequences for public health are explored.

 

Gadi Lissak, Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study, Environmental Research, Volume 164, 2018, Pages 149-157, ISSN 0013-9351

  • Abstract: A growing body of literature is associating excessive and addictive use of digital media with physical, psychological, social and neurological adverse consequences. Research is focusing more on mobile devices use, and studies suggest that duration, content, after-dark-use, media type and the number of devices are key components determining screen time effects. Physical health effects: excessive screen time is associated with poor sleep and risk factors for cardiovascular diseases such as high blood pressure, obesity, low HDL cholesterol, poor stress regulation (high sympathetic arousal and cortisol dysregulation), and Insulin Resistance. Other physical health consequences include impaired vision and reduced bone density. Psychological effects: internalizing and externalizing behavior is related to poor sleep. Depressive symptoms and suicidal are associated to screen time induced poor sleep, digital device night use, and mobile phone dependency. ADHD-related behavior was linked to sleep problems, overall screen time, and violent and fast-paced content which activates dopamine and the reward pathways. Early and prolonged exposure to violent content is also linked to risk for antisocial behavior and decreased prosocial behavior. Psychoneurological effects: addictive screen time use decreases social coping and involves craving behavior which resembles substance dependence behavior. Brain structural changes related to cognitive control and emotional regulation are associated with digital media addictive behavior. A case study of a treatment of an ADHD diagnosed 9-year-old boy suggests screen time induced ADHD-related behavior could be inaccurately diagnosed as ADHD. Screen time reduction is effective in decreasing ADHD-related behavior.
    Conclusions
    Components crucial for psychophysiological resilience are none-wandering mind (typical of ADHD-related behavior), good social coping and attachment, and good physical health. Excessive digital media use by children and adolescents appears as a major factor which may hamper the formation of sound psychophysiological resilience.

 

Bua, E. Tibaldi, L. Falcioni, M. Lauriola, L. De Angelis, F. Gnudi, M. Manservigi, F. Manservisi, I. Manzoli, I. Menghetti, R. Montella, S. Panzacchi, D. Sgargi, V. Strollo, A. Vornoli, D. Mandrioli, F. Belpoggi, Results of lifespan exposure to continuous and intermittent extremely low frequency electromagnetic fields (ELFEMF) administered alone to Sprague Dawley rats, Environmental Research, Volume 164, 2018, Pages 271-279, ISSN 0013-9351

  • Abstract: Background
    Up to now, experimental studies on rodents have failed to provide definitive confirmation of the carcinogenicity of extremely low frequency electromagnetic fields (ELFEMF). Two recent studies performed in our laboratory on Sprague-Dawley rats reported a statistically significant increase in malignant tumors of different sites (mammary gland, C-cells carcinoma, hemolymphoreticular neoplasia, and malignant heart Schwannoma) when ELFEMF exposure was associated with exposure to formaldehyde (50 mg/l) or acute low dose of γ-radiation (0.1 Gy) (Soffritti et al., 2016a) (Soffritti et al., 2016b). The same doses of known carcinogenic agents (50 mg/l formaldehyde, or acute 0.1 Gy γ-radiation), when administered alone, previously failed to induce any statistically significant increase in the incidence of total and specific malignant tumors in rats of the same colony.
    Objectives
    A lifespan whole-body exposure study was conducted to evaluate the possible carcinogenic effects of ELFEMF exposure administered alone to Sprague-Dawley rats, as part of the integrated project of the Ramazzini Institute (RI) for studying the effects on health of ELFEMF alone or in combination with other known carcinogens.
    Methods
    Male and female Sprague-Dawley rats were exposed 19 h/day to continuous sinusoidal-50 Hz magnetic fields (S-50 Hz MF) at flux densities of 0 (control group), 2, 20, 100 or 1000µT, and to intermittent (30 min on/30 min off) S-50 Hz MF at 1000 µT, from prenatal life until natural death.
    Results
    Survival and body weight trends in all groups of rats exposed to ELFEMF were comparable to those found in sex-matched controls. The incidence and number of malignant and benign tumors was similar in all groups. Magnetic field exposure did not significantly increase the incidence of neoplasias in any organ, including those sites that have been identified as possible targets in epidemiological studies (leukemia, breast cancer, and brain cancer).
    Conclusions
    Life-span exposures to continuous and intermittent sinusoidal-50 Hz ELFEMFs, when administered alone, did not represent a significant risk factor for neoplastic development in our experimental rat model. In light of our previous results on the carcinogenic effects of ELFEMF in combination with formaldehyde and γ-radiation, further experiments are necessary to elucidate the possible role of ELFEMF as cancer enhancer in presence of other chemical and physical carcinogens.

 

Adem Kocaman, Gamze Altun, Arife Ahsen Kaplan, Ömür Gülsüm Deniz, Kıymet Kübra Yurt, Süleyman Kaplan, Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields, Environmental Research, Volume 163, 2018,Pages 71-79, ISSN 0013-9351

  • Abstract: New technologies in electronics and communications are continually emerging. An increasing use of these electronic devices such as mobile phone, computer, wireless fidelity connectors or cellular towers is raising questions concerning whether they have an adverse effect on the body. Exposure to electromagnetic fields (EMF) is frequently suggested to have adverse health effects on humans and other organisms. This idea has been reported in many studies. In contrast, the therapeutic effects of EMF on different organs have also been reported. Research findings are inconsistent. This has given rise to very profound discrepancies. The duration and frequency of mobile phone calls and the association observed with various health effects has raised serious concerns due to the frequency with which these devices are used and the way they are held close to the head. The present review assesses the results of in vitro, in vivo, experimental, and epidemiological studies. The purpose of the study is to assess data concerning the carcinogenic and genotoxic effects of non-ionizing EMF. The major genotoxic and carcinogenic effects of EMF, divided into subsections as low frequency effects and radiofrequency effects, were reviewed. The inconsistent results between similar studies and the same research groups have made it very difficult to make any comprehensive interpretation. However, evaluation of current studies suggests that EMF may represent a serious source of concern and may be hazardous to living organisms.

 

Martin L. Pall, Wi-Fi is an important threat to human health, Environmental Research, Environmental Research, Volume 164, 2018, Pages 405-416, ISSN 0013-9351

  • Abstract: Repeated Wi-Fi studies show that Wi-Fi causes oxidative stress, sperm/testicular damage, neuropsychiatric effects including EEG changes, apoptosis, cellular DNA damage, endocrine changes, and calcium overload. Each of these effects are also caused by exposures to other microwave frequency EMFs, with each such effect being documented in from 10 to 16 reviews. Therefore, each of these seven EMF effects are established effects of Wi-Fi and of other microwave frequency EMFs. Each of these seven is also produced by downstream effects of the main action of such EMFs, voltage-gated calcium channel (VGCC) activation. While VGCC activation via EMF interaction with the VGCC voltage sensor seems to be the predominant mechanism of action of EMFs, other mechanisms appear to have minor roles. Minor roles include activation of other voltage-gated ion channels, calcium cyclotron resonance and the geomagnetic magnetoreception mechanism. Five properties of non-thermal EMF effects are discussed. These are that pulsed EMFs are, in most cases, more active than are non-pulsed EMFs; artificial EMFs are polarized and such polarized EMFs are much more active than non-polarized EMFs; dose-response curves are non-linear and non-monotone; EMF effects are often cumulative; and EMFs may impact young people more than adults. These general findings and data presented earlier on Wi-Fi effects were used to assess the Foster and Moulder (F&M) review of Wi-Fi. The F&M study claimed that there were seven important studies of Wi-Fi that each showed no effect. However, none of these were Wi-Fi studies, with each differing from genuine Wi-Fi in three distinct ways. F&M could, at most conclude that there was no statistically significant evidence of an effect. The tiny numbers studied in each of these seven F&M-linked studies show that each of them lack power to make any substantive conclusions. In conclusion, there are seven repeatedly found Wi-Fi effects which have also been shown to be caused by other similar EMF exposures. Each of the seven should be considered, therefore, as established effects of Wi-Fi.

 

Cindy L. Russell, 5 G wireless telecommunications expansion: Public health and environmental implications, Environmental Research, 2018, ISSN 0013-9351

  • Abstract: The popularity, widespread use and increasing dependency on wireless technologies has spawned a telecommunications industrial revolution with increasing public exposure to broader and higher frequencies of the electromagnetic spectrum to transmit data through a variety of devices and infrastructure. On the horizon, a new generation of even shorter high frequency 5G wavelengths is being proposed to power the Internet of Things (IoT). The IoT promises us convenient and easy lifestyles with a massive 5G interconnected telecommunications network, however, the expansion of broadband with shorter wavelength radiofrequency radiation highlights the concern that health and safety issues remain unknown. Controversy continues with regards to harm from current 2G, 3G and 4G wireless technologies. 5G technologies are far less studied for human or environmental effects. It is argued that the addition of this added high frequency 5G radiation to an already complex mix of lower frequencies, will contribute to a negative public health outcome both from both physical and mental health perspectives. Radiofrequency radiation (RF) is increasingly being recognized as a new form of environmental pollution. Like other common toxic exposures, the effects of radiofrequency electromagnetic radiation (RF EMR) will be problematic if not impossible to sort out epidemiologically as there no longer remains an unexposed control group. This is especially important considering these effects are likely magnified by synergistic toxic exposures and other common health risk behaviors. Effects can also be non-linear. Because this is the first generation to have cradle-to-grave lifespan exposure to this level of man-made microwave (RF EMR) radiofrequencies, it will be years or decades before the true health consequences are known. Precaution in the roll out of this new technology is strongly indicated. This article will review relevant electromagnetic frequencies, exposure standards and current scientific literature on the health implications of 2G, 3G, 4G exposure, including some of the available literature on 5G frequencies. The question of what constitutes a public health issue will be raised, as well as the need for a precautionary approach in advancing new wireless technologies.

 

Frank Barnes, Ben Greenebaum, Role of radical pairs and feedback in weak radio frequency field effects on biological systems, Environmental Research, Volume 163, 2018, Pages 165-170, ISSN 0013-9351

  • Abstract: Radio frequency electromagnetic fields (RF) have been shown to modify the concentrations of the radical O2-, H2O2 and cancer cell growth rates at exposure levels below those that cause significant heating. Reactive oxygen species (ROS) are both signaling molecules and species that can do damage, depending on timing, location and concentrations. We briefly look at some mechanisms by which electromagnetic fields can modify the concentrations of ROS and some of the feedback and repair processes that lead to variable biological effects. Of particular interest are the role of radical pairs and their spins, which have received considerable attention recently, and the role of feedback in biological systems, to which less attention has been paid.

 

Falcioni, L. Bua, E. Tibaldi, M. Lauriola, L. De Angelis, F. Gnudi, D. Mandrioli, M. Manservigi, F. Manservisi, I. Manzoli, I. Menghetti, R. Montella, S. Panzacchi, D. Sgargi, V. Strollo, A. Vornoli, F. Belpoggi, Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission, Environmental Research, 2018, ISSN 0013-9351

  • Abstract

    Background: In 2011, IARC classified radiofrequency radiation (RFR) as possible human carcinogen(Group 2B). According to IARC, animals studies, as well as epidemiological ones, showed limited evidence of carcinogenicity. In 2016, the NTP published the first results of its long-term bioassays on near field RFR, reporting increased incidence of malignant glial tumors of the brain and heart Schwannoma in rats exposed to GSM – and CDMA – modulated cell phone RFR. The tumors observed in the NTP study are of the type similar to the ones observed in some epidemiological studies of cell phone users.

    Objectives: The Ramazzini Institute (RI) performed a life-span carcinogenic study on Sprague-Dawley rats to evaluate the carcinogenic effects of RFR in the situation of far field, reproducing the environmental exposure to RFR generated by 1.8 GHz GSM antenna of the radio base stations of mobile phone. This is the largest long-term study ever performed in rats on the health effects of RFR, including 2448 animals. In this article, we reported the final results regarding brain and heart tumors.

    Methods: Male and female Sprague-Dawley rats were exposed from prenatal life until natural death to a 1.8 GHz GSM far field of 0, 5, 25, 50 V/m with a whole-body exposure for 19 h/day.

    Results: A statistically significant increase in the incidence of heart Schwannomas was observed in treated male rats at the highest dose (50 V/m). Furthermore, an increase in the incidence of heart Schwann cells hyperplasia was observed in treated male and female rats at the highest dose (50 V/m), although this was not statistically significant. An increase in the incidence of malignant glial tumors was observed in treated female rats at the highest dose (50 V/m), although not statistically significant.

    Conclusions: The RI findings on far field exposure to RFR are consistent with and reinforce the results of the NTP study on near field exposure, as both reported an increase in the incidence of tumors of the brain and heart in RFR-exposed Sprague-Dawley rats. These tumors are of the same histotype of those observed in some epidemiological studies on cell phone users. These experimental studies provide sufficient evidence to call for the re-evaluation of IARC conclusions regarding the carcinogenic potential of RFR in humans.

 

Fernández, A.A. de Salles, M.E. Sears, R.D. Morris, D.L. Davis, Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality, Environmental Research, 2018, ISSN 0013-9351

  • Abstract: Children’s brains are more susceptible to hazardous exposures, and are thought to absorb higher doses of radiation from cell phones in some regions of the brain. Globally the numbers and applications of wireless devices are increasing rapidly, but since 1997 safety testing has relied on a large, homogenous, adult male head phantom to simulate exposures; the “Standard Anthropomorphic Mannequin” (SAM) is used to estimate only whether tissue temperature will be increased by more than 1 Celsius degree in the periphery. The present work employs anatomically based modeling currently used to set standards for surgical and medical devices, that incorporates heterogeneous characteristics of age and anatomy. Modeling of a cell phone held to the ear, or of virtual reality devices in front of the eyes, reveals that young eyes and brains absorb substantially higher local radiation doses than adults’. Age-specific simulations indicate the need to apply refined methods for regulatory compliance testing; and for public education regarding manufacturers’ advice to keep phones off the body, and prudent use to limit exposures, particularly to protect the young.

 

Gamze Altun, Ömür Gülsüm Deniz, Kıymet Kübra Yurt, Devra Davis, Süleyman Kaplan, Effects of mobile phone exposure on metabolomics in the male and female reproductive systems, Environmental Research, 2018, ISSN 0013-9351

  • Abstract: With current advances in technology, a number of epidemiological and experimental studies have reported a broad range of adverse effects of electromagnetic fields (EMF) on human health. Multiple cellular mechanisms have been proposed as direct causes or contributors to these biological effects. EMF-induced alterations in cellular levels can activate voltage-gated calcium channels and lead to the formation of free radicals, protein misfolding and DNA damage. Because rapidly dividing germ cells go through meiosis and mitosis, they are more sensitive to EMF in contrast to other slower-growing cell types. In this review, possible mechanistic pathways of the effects of EMF exposure on fertilization, oogenesis and spermatogenesis are discussed. In addition, the present review also evaluates metabolomic effects of GSM-modulated EMFs on the male and female reproductive systems in recent human and animal studies. In this context, experimental and epidemiological studies which examine the impact of mobile phone radiation on the processes of oogenesis and spermatogenesis are examined in line with current approaches.

 

Ahmad Yahyazadeh, Ömür Gülsüm Deniz, Arife Ahsen Kaplan, Gamze Altun, Kıymet Kübra Yurt, Devra Davis, The genomic effects of cell phone exposure on the reproductive system, Environmental Research, 2018, ISSN 0013-9351

  • Abstract: Humans are exposed to increasing levels of electromagnetic fields (EMF) at various frequencies as technology advances. In this context, improving understanding of the biological effects of EMF remains an important, high priority issue. Although a number of studies in this issue and elsewhere have focused on the mechanisms of the oxidative stress caused by EMF, the precise understanding of the processes involved remains to be elucidated. Due to unclear results among the studies, the issue of EMF exposure in the literature should be evaluated at the genomic level on the reproductive system. Based on this requirement, a detail review of recently published studies is necessary. The main objectives of this study are to show differences between negative and positive effect of EMF on the reproductive system of animal and human. Extensive review of literature has been made based on well known data bases like Web of Science, PubMed, MEDLINE, Google Scholar, Science Direct, Scopus. This paper reviews the current literature and is intended to contribute to a better understanding of the genotoxic effects of EMF emitted from mobile phones and wireless systems on the human reproductive system, especially on fertility. The current literature reveals that mobile phones can affect cellular functions via non-thermal effects. Although the cellular targets of global system for mobile communications (GSM)-modulated EMF are associated with the cell membrane, the subject is still controversial. Studies regarding the genotoxic effects of EMF have generally focused on DNA damage. Possible mechanisms are related to ROS formation due to oxidative stress. EMF increases ROS production by enhancing the activity of nicotinamide adenine dinucleotide (NADH) oxidase in the cell membrane. Further detailed studies are needed to elucidate DNA damage mechanisms and apoptotic pathways during oogenesis and spermatogenesis in germ cells exposed to EMF.

 

Lance McKee, Meeting the imperative to accelerate environmental bioelectromagnetics research, Environmental Research, Volume 164, 2018, Pages 100-108, ISSN 0013-9315

  • Abstract: In this article, the author draws on his experience in the world of geospatial information technology standards to suggest a path toward acceleration of bioelectromagnetics science. Many studies show biological effects of extremely low frequency (ELF) and radiofrequency (RF) radiation despite that fact that the radiation is too weak to cause temperature changes in biological features. Considered together in worst case scenarios, such effects, many of which appear to have long latencies, could have potentially disastrous consequences for the health and safety of humans and wildlife. Other studies show no such effects, and in both cases, often there are significant research quality deficits that make it difficult to draw firm conclusions from the data. The progress of bioelectromagnetics science is retarded by a lack of standard data models and experimental protocols that could improve the overall quality of research and make it easier for researchers to benefit from omics-related bioinformatics resources. “Certainty of safety” of wireless devices used in digital communications and remote sensing (radar) is impossible without dosimetry standards that reflect the effects of non-thermal exposures. Electrical signaling in biological systems, a poorly funded research domain, is as biologically important as chemical signaling, a richly funded research domain, and these two types of signaling are inextricably connected. Entrepreneurial scientists pursuing bioelectronic innovations have begun to attract new funding. With appropriate institutional coordination, this new funding could equally benefit those investigating environmental effects of ELF and RF radiation. The author proposes a concerted effort among both bioelectronics technology stakeholders and environmental bioelectromagnetics science researchers to collaborate in developing institutional arrangements and standard data models that would give the science a stronger bioinformatics platform and give researchers better access to omics data. What is proposed here is essentially a bioelectromagnetics omics initiative.

 

Anthony B. Miller, L. Lloyd Morgan, Iris Udasin, Devra Lee Davis, Cancer epidemiology update, following the 2011 IARC evaluation of radiofrequency electromagnetic fields (Monograph 102), Environmental Research, Volume 167, 2018, Pages 673-683, ISSN 0013-9351

  • Abstract: Epidemiology studies (case-control, cohort, time trend and case studies) published since the International Agency for Research on Cancer (IARC) 2011 categorization of radiofrequency radiation (RFR) from mobile phones and other wireless devices as a possible human carcinogen (Group 2B) are reviewed and summarized. Glioma is an important human cancer found to be associated with RFR in 9 case-control studies conducted in Sweden and France, as well as in some other countries. Increasing glioma incidence trends have been reported in the UK and other countries. Non-malignant endpoints linked include acoustic neuroma (vestibular Schwannoma) and meningioma. Because they allow more detailed consideration of exposure, case-control studies can be superior to cohort studies or other methods in evaluating potential risks for brain cancer. When considered with recent animal experimental evidence, the recent epidemiological studies strengthen and support the conclusion that RFR should be categorized as carcinogenic to humans (IARC Group 1). Opportunistic epidemiological studies are proposed that can be carried out through cross-sectional analyses of high, medium, and low mobile phone users with respect to hearing, vision, memory, reaction time, and other indicators that can easily be assessed through standardized computer-based tests. As exposure data are not uniformly available, billing records should be used whenever available to corroborate reported exposures.

 

Ronald L. Melnick, Commentary on the utility of the National Toxicology Program study on cell phone radiofrequency radiation data for assessing human health risks despite unfounded criticisms aimed at minimizing the findings of adverse health effects, Environmental Research, Volume 168, 2019, Pages 1-6, ISSN 0013-9351

  • Abstract: The National Toxicology Program (NTP) conducted two-year studies of cell phone radiation in rats and mice exposed to CDMA- or GSM-modulated radiofrequency radiation (RFR) at exposure intensities in the brain of rats that were similar to or only slightly higher than potential, localized human exposures from cell phones held next to the head. This study was designed to test the (null) hypothesis that cell phone radiation at non-thermal exposure intensities could not cause adverse health effects, and to provide dose-response data for any detected toxic or carcinogenic effects. Partial findings released from that study showed significantly increased incidences and/or trends for gliomas and glial cell hyperplasias in the brain and schwannomas and Schwann cell hyperplasias in the heart of exposed male rats. These results, as well as the findings of significantly increased DNA damage (strand breaks) in the brains of exposed rats and mice, reduced pup birth weights when pregnant dams were exposed to GSM- or CDMA-modulated RFR, and the induction of cardiomyopathy of the right ventricle in male and female rats clearly demonstrate that the null hypothesis has been disproved. The NTP findings are most important because the International Agency for Research on Cancer (IARC) classified RFR as a “possible human carcinogen” based largely on increased risks of gliomas and acoustic neuromas (which are Schwann cell tumors on the acoustic nerve) among long term users of cell phones. The concordance between rats and humans in cell type affected by RFR strengthens the animal-to-human association. This commentary addresses several unfounded criticisms about the design and results of the NTP study that have been promoted to minimize the utility of the experimental data on RFR for assessing human health risks. In contrast to those criticisms, an expert peer-review panel recently concluded that the NTP studies were well designed, and that the results demonstrated that both GSM- and CDMA-modulated RFR were carcinogenic to the heart (schwannomas) and brain (gliomas) of male rats.

STAY UPDATED ABOUT 5G

Join our mailing list to receive the latest news and science from Environmental Health Trust. We email our subscribers with a newsletter just once a month and never share your email with anyone.


Thank you for signing up for our newsletter!