

National Institute of Environmental Health Sciences Your Environment. Your Health.

Partial Results of NTP Chronic Carcinogenicity Studies of Cell Phone Radiofrequency Radiation in Rats

Linda S. Birnbaum, Ph.D., D.A.B.T., A.T.S. Director

National Institute of Environmental Health Sciences National Toxicology Program

January 24, 2017 ♦ Jerusalem, Israel

National Institutes of Health • U.S. Department of Health and Human Services

- U.S. Food and Drug Administration (FDA) nominated cell phone radiofrequency radiation (RFR) emissions for toxicology and carcinogenicity testing
 - Human exposure is widespread, little known about potential health effects of long-term exposure
 - Current exposure guidelines are based on protection from acute injury from thermal effects
- Epidemiology studies demonstrate a potential increase in glial cell tumors in the brain and vestibular schwannomas (acoustic neuromas) may be associated with cell phone usage
 - Inconsistent results, confounding factors, biases, and long latency periods
- Studies in laboratory animals have not associated exposure to RFR with an increase in tumors at any site
 - Study inadequacies and limitations; physical and logistical challenges
- IARC 2B classification *Possibly carcinogenic to humans*

Federal Communications Commission (FCC)

- Cell phone devices are required to meet exposure guidelines set by the FCC
- Based on acute effects from higher levels of exposure, and may not be protective against chronic, lower levels of exposures

Food and Drug Administration (FDA)

- FDA jurisdiction for any health-related issues under the 1968 Radiation Control for Health and Safety Act
- Cannot mandate the cell phone industry to provide data on health effect

Other agencies have interest

 National Cancer Institute (NCI), Environmental Protection Agency (EPA), National Institute for Occupational Safety and Health (NIOSH)

- Most animal studies at the time used a Ferris-wheel exposure system
 - Maintained uniform field exposures, but short duration of exposure in restrained animals
- Established collaboration with the National Institute of Standards and Technology (NIST) to develop an exposure system that would address the limitation in existing exposure systems
- Established collaboration with IT'IS Foundation (Switzerland) to conduct complex computational models of RF dosimetry to provided estimates of <u>whole-body</u> and <u>organ-specific</u> internal field strengths and specific absorption rates (SAR) at 900 and 1900 MHz

- IT'IS Foundation built and tested a prototype chamber based on the technical parameters obtained and optimized in the NIST studies
- Constructed 21 reverberation chambers in Switzerland
 - Separate chamber for each power level (SAR) for each modulation
 - 2 signal modulations: Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM)
 - GSM: low, med, high; CDMA: low, med, high; control chamber* without any RFR signals
 - 7 chambers for mouse studies at 1900MHz
 - 14 chambers for rat studies at 900MHz (7 for males and 7 for females)
- Installed chambers at **IIT Research Institute** (IITRI) in Chicago, IL

*Each sex/species had a common control chamber for both GSM and CDMA modulations 5

The NTP RFR exposure facility

The NTP RFR reverberation chambers

Empty Chamber

Cage Racks

- Three-phase toxicology and carcinogenicity studies in Harlan Sprague Dawley rats and B6C3F₁ mice
 - 5-day thermal pilot studies at SARs of 4-12 W/kg in young and aged rats and mice and pregnant rats (10 studies)
 - **28-day prechronic** toxicology studies
 - **2-year** toxicology and carcinogenicity studies
- In all studies, daily exposure to RFR in reverberation chambers for ~9 hours (18 hr 20 min per day in 10 min on/10 min off cycles)
 - Rats exposed to GSM- or CDMA-modulated signals at 900 MHz
 - Mice exposed to GSM- and CDMA-modulated signals at 1900 MHz

- Determined if animal size (young and aged) or pregnancy status affect RFR thermal effects
 - Measured body temperature, body weight, and survival
- Body temperatures collected via implanted microchips at multiple time points over 5 days
 - A body temperature increase of 1°C was considered an upper tolerable, thermal limit

- Excessive increases in body temperature were observed in pregnant and aged male and female rats at >8 W/kg
- Effects on body temperature observed for GSM and CDMA
- Effects more robust in males than females
- These results suggest upper limit of exposures of 6 W/kg GSM and CDMA in the chronic studies

- Perinatal exposure in HSD rats to 0, 3, 6, 9 W/kg GSM- or CDMA-modulated RFR at 900 MHz
- Significant effects observed at 9 W/kg
 - Increased pup loss during the lactation phase (CDMA only)
 - Decreased body weight in <u>dams</u> and <u>pups</u> during the lactation phase (GSM and CDMA)
 - Excessive increases in body temperature observed in dams at several time points during gestation and lactation (GSM and CDMA)

- NTP released partial report on May 26, 2016
 - http://biorxiv.org/content/early/2016/05/26/055699
- Why not wait and release all study data together?
- High level of public and media interest
- Two tumor types observed in this study are similar type to those observed in some epidemiology studies of cell phone users
- Support IARC conclusions of potential carcinogenic potential of RFR
- Given widespread global usage, even a small increase in incidence of disease resulting from RFR exposure could have broad implications for public health

- Harlan Sprague Dawley rats were exposed to SARs of 0, 1.5, 3, and 6 W/kg GSM- or CDMA-modulated RFR starting *in utero* on GD 5
- Interim evaluation after 13 weeks (n=15/sex/exposure group)
- Study termination after 104 weeks (n=90/sex/exposure group)

- No exposure-related effects on pregnancy or littering
 - Percentage of dams delivering, frequency of implantations or resorptions, number of litters, litter size, or sex distribution of pups (GSM and CDMA)
- On PND1, decreases (5-9%) were observed on litter weights of male (GSM) and female (GSM and CDMA) pups
- During lactation, decreased body weights in dams and in males and female pups (GSM and CDMA)
 - Decreases more robust in CDMA pups (10-15%) compared to GSM exposed pups (6-8%)

- Greater survival in all groups of exposed males compared to controls (GSM and CDMA)
- Less pronounced effect in survival in females (GSM and CDMA)

- Currently only reporting partial findings
- Target organs:
 - Heart (schwannomas)
 - Brain (gliomas)

Hyperplastic Heart Lesions in Male Rats

	Control	GSM Modulation					
	0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg			
Number examined	90	90	90	90			
Schwannoma [‡]	0*	2 (2.2%)	1 (1.1%)	5 (5.5%)			
Schwann cell hyperplasia	0	1 (1.1%)	0	0			

* Significant SAR-dependent trend for GSM and CDMA exposures by poly-3 (p < 0.05)

Hyperplastic Heart Lesions in Male Rats

	Control	GSN	/ Modula	ation	CDMA Modulation			
	0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	
Number examined	90	90	90	90	90	90	90	
Schwannoma [‡]	0*	2 (2.2%)	1 (1.1%)	5 (5.5%)	2 (2.2%)	3 (3.3%)	6** (6.6%)	
Schwann cell hyperplasia	0	1 (1.1%)	0	0	0	0	3 (3.3%)	

* Significant SAR-dependent trend for GSM and CDMA exposures by poly-3 (p < 0.05)

** Significant different than controls poly-3 (p < 0.05)

Hyperplastic Heart Lesions in Female Rats

	Control	GSN	A Modula	ation	CDMA Modulation			
	0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	
Number examined	90	90	90	90	90	90	90	
Schwannoma [‡]	0	0	2 (2.2%)	0	2 (2.2%)	0	2 (2.2%)	
Schwann cell hyperplasia	0	0	0	0	1 (1.1%)	1 (1.1%)	1 (1.1%)	

 Incidences of heart lesions were not significantly different in female rats

Brain – malignant glioma

Hyperplastic Brain Lesions in Male Rats

	i	 i				
	Control	GSM Modulation				
	0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg		
Number examined	90	90	90	90		
Malignant glioma [‡]	0	3 (3.3%)	3 (3.3%)	2 (2.2%)		
Glial cell hyperplasia	0	2 (2.2%)	3 (3.3%)	1 (1.1%)		

Hyperplastic Brain Lesions in Male Rats

	Control	GSN	/ Modula	ation	CDMA Modulation			
	0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	
Number examined	90	90	90	90	90	90	90	
Malignant glioma [‡]	0*	3 (3.3%)	3 (3.3%)	2 (2.2%)	0	0	3 (3.3%)	
Glial cell hyperplasia	0	2 (2.2%)	3 (3.3%)	1 (1.1%)	2 (2.2%)	0	2 (2.2%)	

* Significant SAR-dependent trend for CDMA exposures by poly-6 (p < 0.05)

Hyperplastic Brain Lesions in Female Rats

	Control	GSN	/ Modula	ation	CDMA Modulation			
	0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	1.5 W/kg	3.0 W/kg	6.0 W/kg	
Number examined	90	90	90	90	90	90	90	
Malignant glioma [‡]	0	0	0	1 (1.1%)	2 (2.2%)	0	0	
Glial cell hyperplasia	0	0	1 (1.1%)	0	1 (1.1%)	1 (1.1%)	1 (1.1%)	

 Incidences of brain lesions were not significantly different in female rats

- Body weights at birth and throughout lactation in rat pups exposed *in utero* tended to be lower than controls
- In general, survival was greater in all groups of GSM or CDMA RFR-exposed rats compared to controls
- Increased incidence of schwannoma was observed in the hearts of male rats
 - Significant SAR-dependent positive trend (GSM and CDMA)
 - Significant pair-wise increase at 6 W/kg (CDMA)
- There was a significant SAR-dependent trend for increased gliomas in the brain of rats exposed to CDMA-modulated RFR
- Incidences of heart and brain lesions were not significantly different in female rats

- The hyperplastic lesions and glial cell neoplasms of the heart and brain observed in male rats are considered likely the result of whole-body exposures to GSM- or CDMA-modulated RFR.
 - There is higher confidence in the association between RFR exposure and the neoplastic lesions in the heart than in the brain.
- Exposure of female rats to GSM- or CDMA-modulated RFR resulted in no biologically significant effects in the brain or heart.

 Draft NTP Technical Report is anticipated for peer review at a public meeting in 2017/2018

- Micronucleus assay
 - No significant increases in micronucleated red blood cells in rats or mice
- Comet assay
 - Mixed results in different tissues and brain regions in rats and mice
 - Responders vs. non-responders

			I	MALE			FEMALE						
TS	CDMA	Frontal Cortex	Cerebellum	Hippocamp	Liver	Blood	Frontal Cortex	Cerebellum	Hippocamp	Liver	Blood		
RA	GSM	Frontal Cortex	Cerebellum	Hippocamp	Liver	Blood	Frontal Cortex	Cerebellum	Hippocamp	Liver	Blood		
CE	CDMA	Frontal Cortex	Cerebellum	Hippocamp	Liver	Blood	Frontal Cortex	Cerebellum	Hippocamp	Liver	Blood		
Ш	GSM	Frontal Cortex	Cerebellum	Hippocamp	Liver	Blood	Frontal Cortex	Cerebellum	Hippocamp	Liver	Blood		

Yellow

Statistically significant trend and pairwise SAR-dependent increase

Blue

Statistically significant trend or a pairwise increase

Green

Not significantly different, but increased in 2 or more treatment groups

Smaller scale exposure facility under development

- Chamber design and exposure capabilities similar to original study
- Verification of exposure characteristics provided by NIST
- Provides capability to:
 - discover molecular events induced by RFR (e.g. oxidative stress)
 - replicate and expand genetic toxicity findings and assays (DNA repair processes of particular interest)
 - examine early molecular changes in heart
 - explore thermal effects when not induced by RFR (other heat sources)
 - study other frequencies and modulations
 - evaluate newer technologies (4G, LTE, 5G, etc.)

NTP Study Director: Michael Wyde, Ph.D. NTP Associate Director: John Bucher, Ph.D.

National Institute of Environmental Health Sciences Research Triangle Park, NC

Zurich, Switzerland

National Institute of Environmental Health Sciences Your Environment. Your Health.

Thank You! Questions?

National Institute of Environmental Health Sciences

National Toxicology Program U.S. Department of Health and Human Services

National Institute of Environmental Health Sciences Superfund Research Program

