Epidemiology of Cell Phones and Other Wireless Transmitting Devices, an Update

Anthony B. Miller, MD, FRCP, Professor Emeritus Dalla Lana School of Public Health, University of Toronto

IIAS conference, January 25, 2016

Why do we now think that Cell phones probably cause Brain Cancer?

Three important sets of case-control studies:

- Interphone ~2-fold increased risk for 10+ years use
- Hardell in Sweden several studies showing ~2-5 fold increased risk after prolonged use
- Cerenat France, ~5-fold increased risk for 5+ years use

## Risk of brain tumours in relation to estimated RF dose from mobile phones (Cardis et al, 2011)

| <u>OR</u> | <u>95% CI</u>                                     |
|-----------|---------------------------------------------------|
|           |                                                   |
| 1.0       |                                                   |
|           |                                                   |
| 0.81      | 0.46-1.42                                         |
| 1.11      | 0.71-1.75                                         |
| 0.81      | 0.50-1.33                                         |
| 1.03      | 0.64-1.67                                         |
| 1.72      | 1.07-2.77                                         |
|           | OR<br>1.0<br>0.81<br>1.11<br>0.81<br>1.03<br>1.72 |

| Risk of bra                 | ain tumours in     | relation to   |
|-----------------------------|--------------------|---------------|
| estimated R                 | F dose from mo     | obile phones  |
| ()                          | Cardis et al, 2011 | L)            |
| <u>Exposure</u>             | <u>OR</u>          | <u>95% CI</u> |
| Specific Absorption<br>(SA) |                    |               |
| 7+ Years in the past        |                    |               |
| Never regular user          | 1.0                | 0.46-1.42     |
| <76.7                       | 1.11               | 0.61-2.02     |
| 76.7-                       | 1.53               | 0.85-2.78     |
| 284.1-                      | 1.50               | 0.81-2.78     |
| 978.9-                      | 1.69               | 0.91-3.13     |
| 3123.9+                     | 1.91               | 1.05-3.47     |

## Mobile Phone Use and Brain Tumors in Children and Adolescents (CEFALO) (Aydin et al, 2011)

| <u>Exposure</u>          | <u>OR</u> | <u>95% CI</u> |
|--------------------------|-----------|---------------|
| Regular use              | 1.36      | 0.92-2.02     |
| Time since first<br>use: |           |               |
| Never regular<br>user    | 1.0       |               |
| Up to 3.3 years          | 1.35      | 0.89-2.04     |
| 3.3-5.0 years            | 1.47      | 0.87-2.49     |
| >5 years                 | 1.26      | 0.70-2.28     |

## Mobile Phone Use and Brain Tumors in Children and Adolescents (CEFALO) (Aydin et al, 2011)

| Operator recorded use          | <u>OR</u> | <u>95% CI</u> |
|--------------------------------|-----------|---------------|
| Time since first subscription: |           |               |
| Never regular                  | 1.0       |               |
| user                           |           |               |
| Up to 1.8 years                | 0.78      | 0.43-1.40     |
| 1.8-2.8 years                  | 1.71      | 0.85-3.44     |
| >2.8 years                     | 2.15      | 1.07-4.29     |

## Cumulative use of Wireless phones and Malignant Brain Tumors (Hardell et al, 2013)



Risk of Glioma for use of mobile and cordless phones by site of tumour. (Hardell et al, 2013)

| <u>Site</u>   | <u>OR</u> | <u>95% CI</u> |
|---------------|-----------|---------------|
| Ipsilateral   |           |               |
| Mobile phone: | 1.7       | 1.01-2.9      |
| Cordless:     | 1.9       | 1.1-3.2       |
| Contralateral |           |               |
| Mobile phone: | 1.4       | 0.8-2.5       |
| Cordless:     | 1.6       | 0.9-2.8       |

| Mobile phor                   | ie use and G    | liomas in the |
|-------------------------------|-----------------|---------------|
| CERENA                        | T case-contr    | ol study      |
| (Co                           | ureau et al, 20 | )14)          |
| <u>Exposure</u>               | <u>OR</u>       | <u>95% CI</u> |
| Average calling<br>time/month |                 |               |
| <2                            | 0.91            | 0.57-1.46     |
| 2-4                           | 0.57            | 0.30-1.10     |
| 5-14                          | 1.70            | 0.97-2.99     |
| 15 or more-                   | 4.21            | 2.00-8.87     |
| Urban use only                | 8.20            | 1.37-49.07    |
| Ipsilateral                   | 2.11            | 0.73-6.08     |
| Contralateral                 | 0.66            | 0.23-1.89     |

Risk of Glioma for use of mobile and cordless phones in different latency groups. (Hardell et al, 2015)

| <u>Latency</u> | <u>OR</u> | <u>95% Cl</u> |
|----------------|-----------|---------------|
| Never regular  | 1.0       |               |
| user           |           |               |
| >1-5 years     | 1.1       | 0.9-1.4       |
| >5-10 years    | 1.5       | 1.2-1.9       |
| >10-15 years   | 1.4       | 1.1-1.8       |
| >15-20 years   | 1.7       | 1.2-2.3       |
| >20-25 years   | 1.9       | 1.3-2.9       |
| >25 years      | 3.0       | 1.7-5.2       |

## The Intracranial Distribution of Gliomas in Relation to Exposure From Mobile Phones (Grell et al, 2016)

| Distance From Preferred<br>Ear to Gravity Center of<br>Tumor | <u>OR</u> | <u>95% CI</u> |
|--------------------------------------------------------------|-----------|---------------|
| 15-55 mm - Females                                           | 1.85      | 1.41-4.04     |
| >55-75 mm – Females                                          | 1.85      | 1.36-2.96     |
| 15-55 mm- Males                                              | 3.04      | 1.63-7.54     |
| >55-75 mm - Males                                            | 1.68      | 1.26-2.33     |

## Risk of Meningiomas in relation to estimated RF dose from mobile phones (Cardis et al, 2011)

| <u>Exposure</u>             | <u>OR</u> | <u>95% CI</u> |
|-----------------------------|-----------|---------------|
| Specific Absorption<br>(SA) |           |               |
| 7+ Years in the past        |           |               |
| Never regular user          | 1.0       |               |
| <76.7                       | 1.07      | 0.64-1.78     |
| 76.7-                       | 0.74      | 0.33-1.67     |
| 284.1-                      | 0.88      | 0.47-1.64     |
| 978.9-                      | 1.00      | 0.52-1.92     |
| 3123.9+                     | 2.01      | 1.03-3.93     |

## Mobile phone use and Meningiomas in the CERENAT case-control study (Coureau et al, 2014)

| <u>Exposure</u>            | <u>OR</u> | <u>95% CI</u> |
|----------------------------|-----------|---------------|
| Average calling time/month |           |               |
| <2                         | 1.05      | 0.60-1.81     |
| 2-4                        | 0.45      | 0.22-0.91     |
| 5-14                       | 0.78      | 0.36-1.68     |
| 15 or more-                | 2.02      | 0.81-5.04     |
| Urban use only             | 2.72      | 0.36-20.78    |
| Ipsilateral                | 2.29      | 0.58-8.97     |
| Contralateral              | 1.18      | 0.34-4.12     |

Risk of Acoustic Neuroma for use of mobile and cordless phones in different latency groups. (Hardell et al, 2013)

| Latency       | <u>OR</u> | <u>95% CI</u> |
|---------------|-----------|---------------|
| Never regular | 1.0       |               |
| user          |           |               |
| >1-5 years    | 1.2       | 0.8-1.6       |
| >5-10 years   | 1.8       | 1.3-2.7       |
| >10-15 years  | 2.0       | 1.3-3.2       |
| >15-20 years  | 1.7       | 0.9-3.3       |
| >20 years     | 4.4       | 2.2-9.0       |

| Nation-wide                        | e CC study o   | f Vestibular  |
|------------------------------------|----------------|---------------|
| Schwannom                          | a diagnosed    | d in Sweden   |
| betw                               | veen 2002-2    | 2007          |
| (Pette                             | rsson et al, 2 | 2014)         |
| <u>Exposure</u>                    | <u>OR</u>      | <u>95% CI</u> |
| Ever used<br>regularly             | 1.18           | 0.88 to 1.59  |
| 5-9 years since<br>first use       | 1.40           | 0.98-2.00     |
| 10 or more years<br>from first use | 1.11           | 0.76-1.61     |
| Ipsilateral use                    | 0.98           | 0.68-1.43     |
| ≥680 hours use                     | 1.46           | 0.98-2.17     |

#### Update of Danish Cohort Study – All brain tumors (Frei et al, 2011)

| <u>Exposure</u>           | <u>IRR</u> | <u>95% CI</u> |
|---------------------------|------------|---------------|
| ≥13 years of subscription |            |               |
| Men                       | 1.03       | 0.83-1.27     |
| Women                     | 0.91       | 0.41-2.04     |

#### Million Women Cohort Study, UK (Benson et al, 2013)

| Exposure and             | <u>RR</u> | <u>95% CI</u> |
|--------------------------|-----------|---------------|
| <u>tumor</u>             |           |               |
| Ever use mobile<br>phone |           |               |
| Glioma                   | 0.91      | 0.76-1.06     |
| Meningioma               | 1.05      | 0.81-1.38     |
| Acoustic<br>Neuroma      | 1.44      | 0.91-2.28     |

#### Million Women Cohort Study, UK (Benson et al, 2013)

| Exposure and    | <u>RR</u> | <u>95% CI</u> |
|-----------------|-----------|---------------|
| <u>tumor</u>    |           |               |
| Duration of use |           |               |
| 10+ years       |           |               |
| Glioma          | 0.78      | 0.55-1.10     |
| Meningioma      | 1.10      | 0.66-1.84     |
| Acoustic        | 2.46      | 1.07-5.64     |
| Neuroma         |           |               |

# Trends in cancer incidence

- Expectation: Any change will be slow, and small
- Potential confounding: Trends in diagnosis
- Latent period: Could be prolonged
- Examples: US, UK, Australia, Israel (parotid gland tumors)

## Incidence trends of temporal lobe GBM in the US: 1992-2006. (Zada et al, 2014)

| <u>Registry</u> | <u>APC</u> | <u>p</u> |  |
|-----------------|------------|----------|--|
| Los Angeles     | 2.3        | 0.010    |  |
| California      | 2.3        | 0.026    |  |
| SEER 12         | 1.3        | 0.027    |  |

## Incidence trends of frontal lobe GBM in the US: 1992-2006. (Zada et al, 2014)

| <u>Registry</u> | <u>APC</u> | <u>p</u> |  |
|-----------------|------------|----------|--|
| Los Angeles     | 3.0        | 0.001    |  |
| California      | 2.4        | <0.001   |  |
| SEER 12         | 2.5        | 0.025    |  |

#### **Case Series**

# ≻7 (+) unusual case reports of breast cancer

➤Two Cancer Clusters in Israel

# Summary of 7 Breast Cancer cases

- ➢ Negative for genetic risk factors
- > No family history or other risk factors
- Unusual location of multi-focal tumors where phones were kept
- No significant histology away from the areas of cellular phone use
- Two with metastases (spread to other parts of body)

# **Overall conclusions**

- ✓ Radiofrequency fields are a Probable Human Carcinogen (IARC Category 2A)
- ✓ Radiofrequency fields are now ubiquitous
- Even if the risk per individual is low, it is widely distributed and could become a major public health problem
- The Precautionary Principle must be applied now.